These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2341072)

  • 1. Mitotic activity in the blastema and stump tissues of regenerating hind limbs of Xenopus laevis larvae after amputation at ankle level. An autoradiographic study.
    Abdel-Karim AE; Michael MI; Anton HJ
    Folia Morphol (Praha); 1990; 38(1):1-11. PubMed ID: 2341072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerative responses in cultured hindlimb stumps of larval Xenopus laevis.
    Cannata SM; Bernardini S; Filoni S
    J Exp Zool; 1992 Jul; 262(4):446-53. PubMed ID: 1624916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nerve-independence of limb regeneration in larval Xenopus laevis is correlated to the level of fgf-2 mRNA expression in limb tissues.
    Cannata SM; Bagni C; Bernardini S; Christen B; Filoni S
    Dev Biol; 2001 Mar; 231(2):436-46. PubMed ID: 11237471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic activity in the epidermal cells of regenerating hind limbs of Xenopus laevis larvae after amputation at different levels. An autoradiographic study.
    Abdel-Karim AE; Michael MI; Anton HJ
    Folia Morphol (Praha); 1988; 36(4):357-64. PubMed ID: 3229686
    [No Abstract]   [Full Text] [Related]  

  • 5. Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration.
    Suzuki M; Satoh A; Ide H; Tamura K
    Dev Biol; 2005 Oct; 286(1):361-75. PubMed ID: 16154125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intercalary and supernumerary regeneration in the limbs of the frog, Xenopus laevis.
    Shimizu-Nishikawa K; Takahashi J; Nishikawa A
    Dev Dyn; 2003 Aug; 227(4):563-72. PubMed ID: 12889065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphogenesis and differentiation of grafted blastemas formed in vitro from amputated hindlimbs of larval Xenopus laevis.
    Bernardini S; Cannata SM; Filoni S
    J Exp Zool; 1996 Nov; 276(4):301-5. PubMed ID: 8946728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration.
    Grow M; Neff AW; Mescher AL; King MW
    Dev Dyn; 2006 Oct; 235(10):2667-85. PubMed ID: 16871633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural comparison between regenerating and developing hindlimbs of Xenopus laevis tadpoles.
    Khan PA; Liversage RA
    Growth Dev Aging; 1990; 54(4):173-81. PubMed ID: 2092016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern duplication by retinoic acid treatment in the regenerating limbs of Korean salamander larvae, Hynobius leechii, correlates well with the extent of dedifferentiation.
    Ju BG; Kim WS
    Dev Dyn; 1994 Apr; 199(4):253-67. PubMed ID: 8075430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitotic activity and nucleic acid precursor incorporation in denervated and innervated limb stumps of axolotl larvae.
    Tassava RA; Mescher AL
    J Exp Zool; 1976 Feb; 195(2):253-62. PubMed ID: 1262816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lens formation from the cornea following implantation into hindlimbs of larval Xenopus laevis: the influence of limb innervation and extent of differentiation.
    Filoni S; Albanesi C; Bernardini S; Cannata SM
    J Exp Zool; 1991 Nov; 260(2):220-8. PubMed ID: 1940824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis.
    Yoshino J; Tochinai S
    Dev Growth Differ; 2004 Dec; 46(6):523-34. PubMed ID: 15610142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray induced inhibition of DNA synthesis and mitosis in internal tissues during the initiation of limb regeneration in the adult newt.
    Wertz RL; Donaldson DJ; Mason JM
    J Exp Zool; 1976 Nov; 198(2):253-9. PubMed ID: 978174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of activation of hedgehog signaling on patterning, growth, and differentiation in Xenopus froglet limb regeneration.
    Yakushiji N; Suzuki M; Satoh A; Ide H; Tamura K
    Dev Dyn; 2009 Aug; 238(8):1887-96. PubMed ID: 19544583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics analysis of regenerating amphibian limbs: changes during the onset of regeneration.
    King MW; Neff AW; Mescher AL
    Int J Dev Biol; 2009; 53(7):955-69. PubMed ID: 19598114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The irradiated epidermis inhibits newt limb regeneration by preventing blastema growth. A histological study.
    Lheureux E; Carey F
    Biol Struct Morphog; 1988; 1(2):49-57. PubMed ID: 3044451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects on adult newt limb regeneration of partial and complete skin flaps over the amputation surface.
    Mescher AL
    J Exp Zool; 1976 Jan; 195(1):117-28. PubMed ID: 1255117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anteroposterior axis formation in Xenopus limb bud recombinants: a model of pattern formation during limb regeneration.
    Yokoyama H; Tamura K; Ide H
    Dev Dyn; 2002 Nov; 225(3):277-88. PubMed ID: 12412010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nerve-independent DNA synthesis and mitosis in regenerating hindlimbs of larval Xenopus laevis.
    Cannata SM; Bernardini S; Di Berardino R; Filoni S
    Rouxs Arch Dev Biol; 1992 May; 201(3):128-133. PubMed ID: 28305578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.