BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 23410887)

  • 1. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms.
    Malhotra A; Lindberg M; Faust GG; Leibowitz ML; Clark RA; Layer RM; Quinlan AR; Hall IM
    Genome Res; 2013 May; 23(5):762-76. PubMed ID: 23410887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.
    Liu P; Erez A; Nagamani SC; Dhar SU; Kołodziejska KE; Dharmadhikari AV; Cooper ML; Wiszniewska J; Zhang F; Withers MA; Bacino CA; Campos-Acevedo LD; Delgado MR; Freedenberg D; Garnica A; Grebe TA; Hernández-Almaguer D; Immken L; Lalani SR; McLean SD; Northrup H; Scaglia F; Strathearn L; Trapane P; Kang SH; Patel A; Cheung SW; Hastings PJ; Stankiewicz P; Lupski JR; Bi W
    Cell; 2011 Sep; 146(6):889-903. PubMed ID: 21925314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.
    Kloosterman WP; Tavakoli-Yaraki M; van Roosmalen MJ; van Binsbergen E; Renkens I; Duran K; Ballarati L; Vergult S; Giardino D; Hansson K; Ruivenkamp CA; Jager M; van Haeringen A; Ippel EF; Haaf T; Passarge E; Hochstenbach R; Menten B; Larizza L; Guryev V; Poot M; Cuppen E
    Cell Rep; 2012 Jun; 1(6):648-55. PubMed ID: 22813740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis.
    Weckselblatt B; Hermetz KE; Rudd MK
    Genome Res; 2015 Jul; 25(7):937-47. PubMed ID: 26070663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants.
    Bahrambeigi V; Song X; Sperle K; Beck CR; Hijazi H; Grochowski CM; Gu S; Seeman P; Woodward KJ; Carvalho CMB; Hobson GM; Lupski JR
    Genome Med; 2019 Dec; 11(1):80. PubMed ID: 31818324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer.
    Kloosterman WP; Hoogstraat M; Paling O; Tavakoli-Yaraki M; Renkens I; Vermaat JS; van Roosmalen MJ; van Lieshout S; Nijman IJ; Roessingh W; van 't Slot R; van de Belt J; Guryev V; Koudijs M; Voest E; Cuppen E
    Genome Biol; 2011 Oct; 12(10):R103. PubMed ID: 22014273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification and thrifty single-molecule sequencing of recurrent somatic structural variations.
    Patel A; Schwab R; Liu YT; Bafna V
    Genome Res; 2014 Feb; 24(2):318-28. PubMed ID: 24307551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis.
    Boeva V; Jouannet S; Daveau R; Combaret V; Pierre-Eugène C; Cazes A; Louis-Brennetot C; Schleiermacher G; Ferrand S; Pierron G; Lermine A; Rio Frio T; Raynal V; Vassal G; Barillot E; Delattre O; Janoueix-Lerosey I
    PLoS One; 2013; 8(8):e72182. PubMed ID: 23991058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. nFuse: discovery of complex genomic rearrangements in cancer using high-throughput sequencing.
    McPherson A; Wu C; Wyatt AW; Shah S; Collins C; Sahinalp SC
    Genome Res; 2012 Nov; 22(11):2250-61. PubMed ID: 22745232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse mechanisms of somatic structural variations in human cancer genomes.
    Yang L; Luquette LJ; Gehlenborg N; Xi R; Haseley PS; Hsieh CH; Zhang C; Ren X; Protopopov A; Chin L; Kucherlapati R; Lee C; Park PJ
    Cell; 2013 May; 153(4):919-29. PubMed ID: 23663786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. novoBreak: local assembly for breakpoint detection in cancer genomes.
    Chong Z; Ruan J; Gao M; Zhou W; Chen T; Fan X; Ding L; Lee AY; Boutros P; Chen J; Chen K
    Nat Methods; 2017 Jan; 14(1):65-67. PubMed ID: 27892959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic origins of diverse genome rearrangements in cancer.
    Dahiya R; Hu Q; Ly P
    Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline.
    Kloosterman WP; Guryev V; van Roosmalen M; Duran KJ; de Bruijn E; Bakker SC; Letteboer T; van Nesselrooij B; Hochstenbach R; Poot M; Cuppen E
    Hum Mol Genet; 2011 May; 20(10):1916-24. PubMed ID: 21349919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Structural Variation: Mechanisms of Chromosome Rearrangements.
    Weckselblatt B; Rudd MK
    Trends Genet; 2015 Oct; 31(10):587-599. PubMed ID: 26209074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns and mechanisms of structural variations in human cancer.
    Yi K; Ju YS
    Exp Mol Med; 2018 Aug; 50(8):1-11. PubMed ID: 30089796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. R-loops and regulatory changes in chronologically ageing fission yeast cells drive non-random patterns of genome rearrangements.
    Ellis DA; Reyes-Martín F; Rodríguez-López M; Cotobal C; Sun XM; Saintain Q; Jeffares DC; Marguerat S; Tallada VA; Bähler J
    PLoS Genet; 2021 Aug; 17(8):e1009784. PubMed ID: 34464389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization.
    Nazaryan-Petersen L; Eisfeldt J; Pettersson M; Lundin J; Nilsson D; Wincent J; Lieden A; Lovmar L; Ottosson J; Gacic J; Mäkitie O; Nordgren A; Vezzi F; Wirta V; Käller M; Hjortshøj TD; Jespersgaard C; Houssari R; Pignata L; Bak M; Tommerup N; Lundberg ES; Tümer Z; Lindstrand A
    PLoS Genet; 2018 Nov; 14(11):e1007780. PubMed ID: 30419018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability.
    Drier Y; Lawrence MS; Carter SL; Stewart C; Gabriel SB; Lander ES; Meyerson M; Beroukhim R; Getz G
    Genome Res; 2013 Feb; 23(2):228-35. PubMed ID: 23124520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome.
    Hampton OA; Den Hollander P; Miller CA; Delgado DA; Li J; Coarfa C; Harris RA; Richards S; Scherer SE; Muzny DM; Gibbs RA; Lee AV; Milosavljevic A
    Genome Res; 2009 Feb; 19(2):167-77. PubMed ID: 19056696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.