These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Kloosterman WP; Tavakoli-Yaraki M; van Roosmalen MJ; van Binsbergen E; Renkens I; Duran K; Ballarati L; Vergult S; Giardino D; Hansson K; Ruivenkamp CA; Jager M; van Haeringen A; Ippel EF; Haaf T; Passarge E; Hochstenbach R; Menten B; Larizza L; Guryev V; Poot M; Cuppen E Cell Rep; 2012 Jun; 1(6):648-55. PubMed ID: 22813740 [TBL] [Abstract][Full Text] [Related]
4. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Weckselblatt B; Hermetz KE; Rudd MK Genome Res; 2015 Jul; 25(7):937-47. PubMed ID: 26070663 [TBL] [Abstract][Full Text] [Related]
5. Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants. Bahrambeigi V; Song X; Sperle K; Beck CR; Hijazi H; Grochowski CM; Gu S; Seeman P; Woodward KJ; Carvalho CMB; Hobson GM; Lupski JR Genome Med; 2019 Dec; 11(1):80. PubMed ID: 31818324 [TBL] [Abstract][Full Text] [Related]
6. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Kloosterman WP; Hoogstraat M; Paling O; Tavakoli-Yaraki M; Renkens I; Vermaat JS; van Roosmalen MJ; van Lieshout S; Nijman IJ; Roessingh W; van 't Slot R; van de Belt J; Guryev V; Koudijs M; Voest E; Cuppen E Genome Biol; 2011 Oct; 12(10):R103. PubMed ID: 22014273 [TBL] [Abstract][Full Text] [Related]
7. Amplification and thrifty single-molecule sequencing of recurrent somatic structural variations. Patel A; Schwab R; Liu YT; Bafna V Genome Res; 2014 Feb; 24(2):318-28. PubMed ID: 24307551 [TBL] [Abstract][Full Text] [Related]
8. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis. Boeva V; Jouannet S; Daveau R; Combaret V; Pierre-Eugène C; Cazes A; Louis-Brennetot C; Schleiermacher G; Ferrand S; Pierron G; Lermine A; Rio Frio T; Raynal V; Vassal G; Barillot E; Delattre O; Janoueix-Lerosey I PLoS One; 2013; 8(8):e72182. PubMed ID: 23991058 [TBL] [Abstract][Full Text] [Related]
9. nFuse: discovery of complex genomic rearrangements in cancer using high-throughput sequencing. McPherson A; Wu C; Wyatt AW; Shah S; Collins C; Sahinalp SC Genome Res; 2012 Nov; 22(11):2250-61. PubMed ID: 22745232 [TBL] [Abstract][Full Text] [Related]
10. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881 [TBL] [Abstract][Full Text] [Related]
11. Diverse mechanisms of somatic structural variations in human cancer genomes. Yang L; Luquette LJ; Gehlenborg N; Xi R; Haseley PS; Hsieh CH; Zhang C; Ren X; Protopopov A; Chin L; Kucherlapati R; Lee C; Park PJ Cell; 2013 May; 153(4):919-29. PubMed ID: 23663786 [TBL] [Abstract][Full Text] [Related]
12. novoBreak: local assembly for breakpoint detection in cancer genomes. Chong Z; Ruan J; Gao M; Zhou W; Chen T; Fan X; Ding L; Lee AY; Boutros P; Chen J; Chen K Nat Methods; 2017 Jan; 14(1):65-67. PubMed ID: 27892959 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic origins of diverse genome rearrangements in cancer. Dahiya R; Hu Q; Ly P Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062 [TBL] [Abstract][Full Text] [Related]
14. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Kloosterman WP; Guryev V; van Roosmalen M; Duran KJ; de Bruijn E; Bakker SC; Letteboer T; van Nesselrooij B; Hochstenbach R; Poot M; Cuppen E Hum Mol Genet; 2011 May; 20(10):1916-24. PubMed ID: 21349919 [TBL] [Abstract][Full Text] [Related]
15. Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements. Keuper K; Wieland A; Räschle M; Storchova Z DNA Repair (Amst); 2021 Nov; 107():103207. PubMed ID: 34425515 [TBL] [Abstract][Full Text] [Related]
16. Patterns and mechanisms of structural variations in human cancer. Yi K; Ju YS Exp Mol Med; 2018 Aug; 50(8):1-11. PubMed ID: 30089796 [TBL] [Abstract][Full Text] [Related]
18. R-loops and regulatory changes in chronologically ageing fission yeast cells drive non-random patterns of genome rearrangements. Ellis DA; Reyes-Martín F; Rodríguez-López M; Cotobal C; Sun XM; Saintain Q; Jeffares DC; Marguerat S; Tallada VA; Bähler J PLoS Genet; 2021 Aug; 17(8):e1009784. PubMed ID: 34464389 [TBL] [Abstract][Full Text] [Related]
19. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization. Nazaryan-Petersen L; Eisfeldt J; Pettersson M; Lundin J; Nilsson D; Wincent J; Lieden A; Lovmar L; Ottosson J; Gacic J; Mäkitie O; Nordgren A; Vezzi F; Wirta V; Käller M; Hjortshøj TD; Jespersgaard C; Houssari R; Pignata L; Bak M; Tommerup N; Lundberg ES; Tümer Z; Lindstrand A PLoS Genet; 2018 Nov; 14(11):e1007780. PubMed ID: 30419018 [TBL] [Abstract][Full Text] [Related]
20. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Drier Y; Lawrence MS; Carter SL; Stewart C; Gabriel SB; Lander ES; Meyerson M; Beroukhim R; Getz G Genome Res; 2013 Feb; 23(2):228-35. PubMed ID: 23124520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]