These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23411086)
1. Evaluating the suitability of Hydrobia ulvae as a test species for sediment metal toxicity testing applying a tissue residue approach to metal mixtures in laboratory and field exposures. Campana O; Rodríguez A; Blasco J Chemosphere; 2013 May; 91(8):1136-45. PubMed ID: 23411086 [TBL] [Abstract][Full Text] [Related]
2. Predicting metal toxicity in sediments: a critique of current approaches. Simpson SL; Batley GE Integr Environ Assess Manag; 2007 Jan; 3(1):18-31. PubMed ID: 17283593 [TBL] [Abstract][Full Text] [Related]
3. Rapid assessments of metal bioavailability in marine sediments using coelomic fluid of sipunculan worms. Tan QG; Ke C; Wang WX Environ Sci Technol; 2013 Jul; 47(13):7499-505. PubMed ID: 23746306 [TBL] [Abstract][Full Text] [Related]
4. An assessment of five Australian polychaetes and bivalves for use in whole-sediment toxicity tests: toxicity and accumulation of copper and zinc from water and sediment. King CK; Dowse MC; Simpson SL; Jolley DF Arch Environ Contam Toxicol; 2004 Oct; 47(3):314-23. PubMed ID: 15386125 [TBL] [Abstract][Full Text] [Related]
5. Suitability of the marine prosobranch snail Hydrobia ulvae for sediment toxicity assessment: A case study with the anionic surfactant linear alkylbenzene sulphonate (LAS). Hampel M; Moreno-Garrido I; González-Mazo E; Blasco J Ecotoxicol Environ Saf; 2009 May; 72(4):1303-8. PubMed ID: 18950861 [TBL] [Abstract][Full Text] [Related]
6. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA. Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of metals to the bivalve Tellina deltoidalis and relationships between metal bioaccumulation and metal partitioning between seawater and marine sediments. King CK; Dowse MC; Simpson SL Arch Environ Contam Toxicol; 2010 Apr; 58(3):657-65. PubMed ID: 19888624 [TBL] [Abstract][Full Text] [Related]
8. Field and laboratory evaluation of DGT for predicting metal bioaccumulation and toxicity in the freshwater bivalve Hyridella australis exposed to contaminated sediments. Amato ED; Marasinghe Wadige CPM; Taylor AM; Maher WA; Simpson SL; Jolley DF Environ Pollut; 2018 Dec; 243(Pt B):862-871. PubMed ID: 30245448 [TBL] [Abstract][Full Text] [Related]
9. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments. Hutchins CM; Teasdale PR; Lee J; Simpson SL Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation and effects of metals bound to sediments collected from Gulf of Cádiz (SW Spain) using the polychaete Arenicola marina. Kalman J; Riba I; DelValls A; Blasco J Arch Environ Contam Toxicol; 2012 Jan; 62(1):22-8. PubMed ID: 21468719 [TBL] [Abstract][Full Text] [Related]
11. The influence of small-scale circum-neutral pH change on Cu-bioavailability and toxicity to an estuarine bivalve (Austriella cf plicifera) in whole-sediment toxicity tests. Hutchins CM; Teasdale PR; Yip Lee S; Simpson SL Sci Total Environ; 2008 Nov; 405(1-3):87-95. PubMed ID: 18675442 [TBL] [Abstract][Full Text] [Related]
12. The freshwater bivalve Corbicula australis as a sentinel species for metal toxicity assessment: An in situ case study integrating chemical and biomarker analyses. Taylor AM; Edge KJ; Ubrihien RP; Maher WA Environ Toxicol Chem; 2017 Mar; 36(3):709-719. PubMed ID: 27530269 [TBL] [Abstract][Full Text] [Related]
13. Guidelines for copper in sediments with varying properties. Simpson SL; Batley GE; Hamilton IL; Spadaro DA Chemosphere; 2011 Nov; 85(9):1487-95. PubMed ID: 21937075 [TBL] [Abstract][Full Text] [Related]
14. Relative sensitivities of toxicity test protocols with the amphipods Eohaustorius estuarius and Ampelisca abdita. Anderson BS; Lowe S; Phillips BM; Hunt JW; Vorhees J; Clark S; Tjeerdema RS Ecotoxicol Environ Saf; 2008 Jan; 69(1):24-31. PubMed ID: 17572492 [TBL] [Abstract][Full Text] [Related]
15. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field. Kalman J; Bonnail-Miguel E; Smith BD; Bury NR; Rainbow PS Sci Total Environ; 2015 Feb; 506-507():109-17. PubMed ID: 25460945 [TBL] [Abstract][Full Text] [Related]
16. Demonstrating the appropriateness of developing sediment quality guidelines based on sediment geochemical properties. Campana O; Blasco J; Simpson SL Environ Sci Technol; 2013 Jul; 47(13):7483-9. PubMed ID: 23745797 [TBL] [Abstract][Full Text] [Related]
17. Lac Dufault sediment core trace metal distribution, bioavailability and toxicity to Hyalella azteca. Nowierski M; Dixon DG; Borgmann U Environ Pollut; 2006 Feb; 139(3):532-40. PubMed ID: 16099560 [TBL] [Abstract][Full Text] [Related]
18. Assessing the risk of metal mixtures in contaminated sediments on Chironomus riparius based on cytosolic accumulation. Péry AR; Geffard A; Conrad A; Mons R; Garric J Ecotoxicol Environ Saf; 2008 Nov; 71(3):869-73. PubMed ID: 18514899 [TBL] [Abstract][Full Text] [Related]
19. A general integrated ecotoxicological method for marine sediment quality assessment: application to sediments from littoral ecosystems on Southern Spain's Atlantic coast. Usero J; Morillo J; El Bakouri H Mar Pollut Bull; 2008 Dec; 56(12):2027-36. PubMed ID: 18817935 [TBL] [Abstract][Full Text] [Related]
20. Hitting Reset on Sediment Toxicity: Sediment Homogenization Alters the Toxicity of Metal-Amended Sediments. Costello DM; Harrison AM; Hammerschmidt CR; Mendonca RM; Burton GA Environ Toxicol Chem; 2019 Sep; 38(9):1995-2007. PubMed ID: 31397935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]