These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23411140)

  • 1. Modeling of ion exchange expanded-bed chromatography for the purification of C-phycocyanin.
    Moraes CC; Mazutti MA; Maugeri F; Kalil SJ
    J Chromatogr A; 2013 Mar; 1281():73-8. PubMed ID: 23411140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling and simulation of inulinase adsorption in expanded bed column.
    Moraes CC; Mazutti MA; Rodrigues MI; Filho FM; Kalil SJ
    J Chromatogr A; 2009 May; 1216(20):4395-401. PubMed ID: 19328491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of phycocyanin from Spirulina platensis using ion exchange chromatography.
    Silveira ST; Quines LK; Burkert CA; Kalil SJ
    Bioprocess Biosyst Eng; 2008 Aug; 31(5):477-82. PubMed ID: 18219495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography.
    Niu JF; Wang GC; Lin XZ; Zhou BC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):267-76. PubMed ID: 17178463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method to obtain C-phycocyanin of high purity.
    Patil G; Chethana S; Sridevi AS; Raghavarao KS
    J Chromatogr A; 2006 Sep; 1127(1-2):76-81. PubMed ID: 16782107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds.
    Yun J; Lin DQ; Yao SJ
    J Chromatogr A; 2005 Nov; 1095(1-2):16-26. PubMed ID: 16275279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of scale-down effects on the hydrodynamics of expanded bed adsorption columns.
    Fenneteau F; Aomari H; Chahal P; Legros R
    Biotechnol Bioeng; 2003 Mar; 81(7):790-9. PubMed ID: 12557312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling of the whole expanded bed adsorption process to recover and purify chitosanases from the unclarified fermentation broth of Paenibacillus ehimensis.
    de Araújo Padilha CE; Fortunato Dantas PV; de Sousa FC; de Santana Souza DF; de Oliveira JA; de Macedo GR; Dos Santos ES
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Dec; 1039():44-50. PubMed ID: 27839666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a process for large-scale purification of C-phycocyanin from Synechocystis aquatilis using expanded bed adsorption chromatography.
    Ramos A; Acién FG; Fernández-Sevilla JM; González CV; Bermejo R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Mar; 879(7-8):511-9. PubMed ID: 21292571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of copper(II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: modeling.
    Hamdaoui O
    J Hazard Mater; 2009 Jan; 161(2-3):737-46. PubMed ID: 18486328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanded bed adsorption of protein with DEAE Spherodex M.
    Chen WD; Tong XD; Dong XY; Sun Y
    Biotechnol Prog; 2003; 19(3):880-6. PubMed ID: 12790653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of chromium (VI) biosorption by immobilized Spirulina platensis in packed column.
    Gokhale SV; Jyoti KK; Lele SS
    J Hazard Mater; 2009 Oct; 170(2-3):735-43. PubMed ID: 19493617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of biomass on the hydrodynamic behavior and stability of expanded beds.
    Lin DQ; Thömmes J; Kula MR; Hubbuch JJ
    Biotechnol Bioeng; 2004 Aug; 87(3):337-46. PubMed ID: 15281108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulation of liquid-solid circulating fluidized bed ion exchange system for continuous protein recovery.
    Mazumder J; Zhu J; Bassi AS; Ray AK
    Biotechnol Bioeng; 2009 Sep; 104(1):111-26. PubMed ID: 19466748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations.
    Lu JG
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1613-20. PubMed ID: 15547973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of operating conditions for protein purification using expanded bed techniques: the effect of the degree of bed expansion on adsorption performance.
    Chang YK; Chase HA
    Biotechnol Bioeng; 1996 Mar; 49(5):512-26. PubMed ID: 18623613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototrophic cultivation of NaCl-tolerant mutant of Spirulina platensis for enhanced C-phycocyanin production under optimized culture conditions and its dynamic modeling.
    Gupta A; Mohan D; Saxena RK; Singh S
    J Phycol; 2018 Feb; 54(1):44-55. PubMed ID: 29027201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis.
    Sun L; Wang S; Qiao Z
    J Biotechnol; 2006 Feb; 121(4):563-9. PubMed ID: 16188340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.
    Chen T; Wong YS; Zheng W
    Phytochemistry; 2006 Nov; 67(22):2424-30. PubMed ID: 16973186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein adsorption-dependent electro-kinetic pore flow: modeling of ion-exchange electrochromatography with an oscillatory transverse electric field.
    Yuan W; Zhao YP; Zhang Q; Sun Y
    Electrophoresis; 2010 Mar; 31(5):944-51. PubMed ID: 20191556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.