BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 23411150)

  • 1. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy.
    Rowley S; Patel M
    Free Radic Biol Med; 2013 Sep; 62():121-131. PubMed ID: 23411150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?
    Waldbaum S; Patel M
    J Bioenerg Biomembr; 2010 Dec; 42(6):449-55. PubMed ID: 21132357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy.
    Pearson JN; Rowley S; Liang LP; White AM; Day BJ; Patel M
    Neurobiol Dis; 2015 Oct; 82():289-297. PubMed ID: 26184893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis.
    Waldbaum S; Liang LP; Patel M
    J Neurochem; 2010 Dec; 115(5):1172-82. PubMed ID: 21219330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria, oxidative stress, and temporal lobe epilepsy.
    Waldbaum S; Patel M
    Epilepsy Res; 2010 Jan; 88(1):23-45. PubMed ID: 19850449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy.
    Rowley S; Liang LP; Fulton R; Shimizu T; Day B; Patel M
    Neurobiol Dis; 2015 Mar; 75():151-8. PubMed ID: 25600213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy.
    Ryan K; Liang LP; Rivard C; Patel M
    Neurobiol Dis; 2014 Apr; 64():8-15. PubMed ID: 24361554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CREB Protects against Temporal Lobe Epilepsy Associated with Cognitive Impairment by Controlling Oxidative Neuronal Damage.
    Xing J; Han D; Xu D; Li X; Sun L
    Neurodegener Dis; 2019; 19(5-6):225-237. PubMed ID: 32417838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress in murine Theiler's virus-induced temporal lobe epilepsy.
    Bhuyan P; Patel DC; Wilcox KS; Patel M
    Exp Neurol; 2015 Sep; 271():329-34. PubMed ID: 26079647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial involvement in temporal lobe epilepsy.
    Kudin AP; Zsurka G; Elger CE; Kunz WS
    Exp Neurol; 2009 Aug; 218(2):326-32. PubMed ID: 19268667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy.
    Gano LB; Liang LP; Ryan K; Michel CR; Gomez J; Vassilopoulos A; Reisdorph N; Fritz KS; Patel M
    Free Radic Biol Med; 2018 Aug; 123():116-124. PubMed ID: 29778462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting deficiencies in mitochondrial respiratory complex I and functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal lobe seizures.
    Simeone KA; Matthews SA; Samson KK; Simeone TA
    Exp Neurol; 2014 Jan; 251():84-90. PubMed ID: 24270080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy.
    Su Y; Cao N; Zhang D; Wang M
    Ageing Res Rev; 2024 Apr; 96():102248. PubMed ID: 38408490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seizure-induced oxidative stress in temporal lobe epilepsy.
    Puttachary S; Sharma S; Stark S; Thippeswamy T
    Biomed Res Int; 2015; 2015():745613. PubMed ID: 25650148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance of the glutathione system in temporal lobe epilepsy: evidence in human and experimental models.
    Cárdenas-Rodríguez N; Coballase-Urrutia E; Pérez-Cruz C; Montesinos-Correa H; Rivera-Espinosa L; Sampieri A; Carmona-Aparicio L
    Oxid Med Cell Longev; 2014; 2014():759293. PubMed ID: 25538816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular neuropathology of temporal lobe epilepsy: complementary approaches in animal models and human disease tissue.
    Majores M; Schoch S; Lie A; Becker AJ
    Epilepsia; 2007; 48 Suppl 2():4-12. PubMed ID: 17571348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRAK1-Mediated Abnormality of Mitochondrial Fission Increases Seizure Susceptibility in Temporal Lobe Epilepsy.
    Wu H; Liu Y; Li H; Du C; Li K; Dong S; Meng Q; Zhang H
    Mol Neurobiol; 2021 Mar; 58(3):1237-1247. PubMed ID: 33119838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis.
    Becker AJ
    Neuropathol Appl Neurobiol; 2018 Feb; 44(1):112-129. PubMed ID: 29130506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered intrinsic functional connectivity in the latent period of epileptogenesis in a temporal lobe epilepsy model.
    Lee H; Jung S; Lee P; Jeong Y
    Exp Neurol; 2017 Oct; 296():89-98. PubMed ID: 28729114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy.
    Zhu X; Zhang A; Dong J; Yao Y; Zhu M; Xu K; Al Hamda MH
    Brain Res Bull; 2019 Oct; 152():175-183. PubMed ID: 31336125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.