BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23411203)

  • 1. Degradation pattern of gibberellic acid during the whole process of tea production.
    Chen H; Liu X; Yang D; Yin P
    Food Chem; 2013 Jun; 138(2-3):976-81. PubMed ID: 23411203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dissipation Pattern of Gibberellic Acid and Its Metabolite, Isogibberellic Acid, during Tea Planting, Manufacturing, and Brewing.
    Jiang C; Han H; Dai J; Wang Z; Chai Y; Lu C; Chen H
    J Agric Food Chem; 2020 Dec; 68(49):14417-14425. PubMed ID: 33191742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fenvalerate residue level and dissipation in tea and in its infusion.
    Sharma A; Gupta M; Shanker A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jan; 25(1):97-104. PubMed ID: 18041598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence and Residue Pattern of Phthalate Esters in Fresh Tea Leaves and during Tea Manufacturing and Brewing.
    Liu P; Chen H; Gao G; Hao Z; Wang C; Ma G; Chai Y; Zhang L; Liu X
    J Agric Food Chem; 2016 Nov; 64(46):8909-8917. PubMed ID: 27784159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles.
    Unachukwu UJ; Ahmed S; Kavalier A; Lyles JT; Kennelly EJ
    J Food Sci; 2010 Aug; 75(6):C541-8. PubMed ID: 20722909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipation behavior of octachlorodipropyl ether residues during tea planting and brewing process.
    Liao M; Shi Y; Cao H; Hua R; Tang F; Wu X; Tang J
    Environ Monit Assess; 2015 Oct; 188(10):551. PubMed ID: 27604890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipation kinetics of bifenazate in tea under tropical conditions.
    Satheshkumar A; Senthurpandian VK; Shanmugaselvan VA
    Food Chem; 2014 Feb; 145():1092-6. PubMed ID: 24128589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimycotoxin UPLC-MS/MS for tea, herbal infusions and the derived drinkable products.
    Monbaliu S; Wu A; Zhang D; Van Peteghem C; De Saeger S
    J Agric Food Chem; 2010 Dec; 58(24):12664-71. PubMed ID: 21121648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation in tea on fate of fenazaquin residue and its transfer in brew.
    Kumar V; Kumar Tewary D; Desikachar Ravindranath S; Shanker A
    Food Chem Toxicol; 2004 Mar; 42(3):423-8. PubMed ID: 14871583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the microwave-assisted extraction conditions of tea polyphenols from green tea.
    Li DC; Jiang JG
    Int J Food Sci Nutr; 2010 Dec; 61(8):837-45. PubMed ID: 20701548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissipation, transfer and safety evaluation of emamectin benzoate in tea.
    Zhou L; Luo F; Zhang X; Jiang Y; Lou Z; Chen Z
    Food Chem; 2016 Jul; 202():199-204. PubMed ID: 26920285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselectivity and residue analysis of fipronil in tea (Camellia sinensis) by ultra-performance liquid chromatography Orbitrap mass spectrometry.
    Chen H; Gao G; Yin P; Dai J; Chai Y; Liu X; Lu C
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Oct; 35(10):2000-2010. PubMed ID: 30188805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sediments in concentrated green tea during low-temperature storage.
    Xu YQ; Chen GS; Du QZ; Que F; Yuan HB; Yin JF
    Food Chem; 2014 Apr; 149():137-43. PubMed ID: 24295687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residue reduction and risk evaluation of chlorfenapyr residue in tea planting, tea processing, and tea brewing.
    Yang J; Luo F; Zhou L; Sun H; Yu H; Wang X; Zhang X; Yang M; Lou Z; Chen Z
    Sci Total Environ; 2020 Oct; 738():139613. PubMed ID: 32534281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the dissipation behaviour of three neonicotinoid insecticides in tea.
    Hou RY; Hu JF; Qian XS; Su T; Wang XH; Zhao XX; Wan XC
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(10):1761-9. PubMed ID: 23906092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of packaging materials on the antioxidant phytochemical stability of aqueous infusions of green tea (Camellia sinensis) and yaupon holly (Ilex vomitoria) during cold storage.
    Kim Y; Welt BA; Talcott ST
    J Agric Food Chem; 2011 May; 59(9):4676-83. PubMed ID: 21434687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer rates of 19 typical pesticides and the relationship with their physicochemical property.
    Chen H; Pan M; Pan R; Zhang M; Liu X; Lu C
    J Agric Food Chem; 2015 Jan; 63(2):723-30. PubMed ID: 25537114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipation behavior of propargite--an acaricide residues in soil, apple (Malus pumila) and tea (Camellia sinensis).
    Kumar V; Sood C; Jaggi S; Ravindranath SD; Bhardwaj SP; Shanker A
    Chemosphere; 2005 Feb; 58(6):837-43. PubMed ID: 15621197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipation Pattern, Processing Factors, and Safety Evaluation for Dimethoate and Its Metabolite (Omethoate) in Tea (Camellia Sinensis).
    Pan R; Chen HP; Zhang ML; Wang QH; Jiang Y; Liu X
    PLoS One; 2015; 10(9):e0138309. PubMed ID: 26406463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residue pattern of polycyclic aromatic hydrocarbons during green tea manufacturing and their transfer rates during tea brewing.
    Gao G; Chen H; Liu P; Hao Z; Ma G; Chai Y; Wang C; Lu C
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):990-999. PubMed ID: 28532335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.