BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23411256)

  • 41. Non-acidic compounds induce the intense sweet taste of neoculin, a taste-modifying protein.
    Nakajima K; Koizumi A; Iizuka K; Ito K; Morita Y; Koizumi T; Asakura T; Shimizu-Ibuka A; Misaka T; Abe K
    Biosci Biotechnol Biochem; 2011; 75(8):1600-2. PubMed ID: 21821940
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin.
    Masuda T; Taguchi W; Sano A; Ohta K; Kitabatake N; Tani F
    Biochimie; 2013 Jul; 95(7):1502-5. PubMed ID: 23370115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimized production and quantification of the tryptophan-deficient sweet-tasting protein brazzein in
    Lee HM; Park SW; Lee SJ; Kong KH
    Prep Biochem Biotechnol; 2019; 49(8):790-799. PubMed ID: 31140364
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cloning, expression and characterization of recombinant sweet-protein thaumatin II using the methylotrophic yeast Pichia pastoris.
    Masuda T; Tamaki S; Kaneko R; Wada R; Fujita Y; Mehta A; Kitabatake N
    Biotechnol Bioeng; 2004 Mar; 85(7):761-9. PubMed ID: 14991654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein.
    Chung JH; Kong JN; Choi HE; Kong KH
    Food Chem; 2018 Nov; 267():163-169. PubMed ID: 29934152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change.
    Masuda T; Ohta K; Mikami B; Kitabatake N; Tani F
    Biochem Biophys Res Commun; 2012 Mar; 419(1):72-6. PubMed ID: 22326916
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developments in biotechnological production of sweet proteins.
    Masuda T; Kitabatake N
    J Biosci Bioeng; 2006 Nov; 102(5):375-89. PubMed ID: 17189164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactions of the sweet protein brazzein with the sweet taste receptor.
    Walters DE; Hellekant G
    J Agric Food Chem; 2006 Dec; 54(26):10129-33. PubMed ID: 17177550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor.
    Temussi PA
    FEBS Lett; 2002 Aug; 526(1-3):1-4. PubMed ID: 12208493
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature-dependent conformational change affecting Tyr11 and sweetness loops of brazzein.
    Cornilescu CC; Cornilescu G; Rao H; Porter SF; Tonelli M; DeRider ML; Markley JL; Assadi-Porter FM
    Proteins; 2013 Jun; 81(6):919-25. PubMed ID: 23349025
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assignment of the disulfide bonds in the sweet protein brazzein.
    Kohmura M; Ota M; Izawa H; Ming D; Hellekant G; Ariyoshi Y
    Biopolymers; 1996 Apr; 38(4):553-6. PubMed ID: 8867215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness.
    Masuda T; Ohta K; Ojiro N; Murata K; Mikami B; Tani F; Temussi PA; Kitabatake N
    Sci Rep; 2016 Feb; 6():20255. PubMed ID: 26837600
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure basis of the improved sweetness and thermostability of a unique double-sites single-chain sweet-tasting protein monellin (MNEI) mutant.
    Zhao M; Xu X; Liu B
    Biochimie; 2018 Nov; 154():156-163. PubMed ID: 30195051
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mechanism of interaction of sweet proteins with the T1R2-T1R3 receptor: evidence from the solution structure of G16A-MNEI.
    Spadaccini R; Trabucco F; Saviano G; Picone D; Crescenzi O; Tancredi T; Temussi PA
    J Mol Biol; 2003 May; 328(3):683-92. PubMed ID: 12706725
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binding mode of brazzein to the taste receptor based on crystal structure and docking simulation.
    Kim TY; Woo EJ; Yoon TS
    Biochem Biophys Res Commun; 2022 Feb; 592():119-124. PubMed ID: 35051687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis.
    Berlec A; Tompa G; Slapar N; Fonović UP; Rogelj I; Strukelj B
    Lett Appl Microbiol; 2008 Feb; 46(2):227-31. PubMed ID: 18215220
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved Secretory Production of the Sweet-Tasting Protein, Brazzein, in Kluyveromyces lactis.
    Yun CR; Kong JN; Chung JH; Kim MC; Kong KH
    J Agric Food Chem; 2016 Aug; 64(32):6312-6. PubMed ID: 27465609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of sweet protein based sweeteners: hints from structure-function relationships.
    Rega MF; Di Monaco R; Leone S; Donnarumma F; Spadaccini R; Cavella S; Picone D
    Food Chem; 2015 Apr; 173():1179-86. PubMed ID: 25466141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain.
    Koizumi A; Nakajima K; Asakura T; Morita Y; Ito K; Shmizu-Ibuka A; Misaka T; Abe K
    Biochem Biophys Res Commun; 2007 Jun; 358(2):585-9. PubMed ID: 17499612
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neoculin, a taste-modifying protein, is recognized by human sweet taste receptor.
    Nakajima K; Asakura T; Oike H; Morita Y; Shimizu-Ibuka A; Misaka T; Sorimachi H; Arai S; Abe K
    Neuroreport; 2006 Aug; 17(12):1241-4. PubMed ID: 16951562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.