BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 23411488)

  • 1. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents.
    Beneduzi A; Ambrosini A; Passaglia LM
    Genet Mol Biol; 2012 Dec; 35(4 (suppl)):1044-51. PubMed ID: 23411488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced systemic resistance (ISR) in plants: mechanism of action.
    Choudhary DK; Prakash A; Johri BN
    Indian J Microbiol; 2007 Dec; 47(4):289-97. PubMed ID: 23100680
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Hashem A; Tabassum B; Fathi Abd Allah E
    Saudi J Biol Sci; 2019 Sep; 26(6):1291-1297. PubMed ID: 31516360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives.
    Meena M; Swapnil P; Divyanshu K; Kumar S; Harish ; Tripathi YN; Zehra A; Marwal A; Upadhyay RS
    J Basic Microbiol; 2020 Oct; 60(10):828-861. PubMed ID: 32815221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease.
    Kashyap AS; Manzar N; Rajawat MVS; Kesharwani AK; Singh RP; Dubey SC; Pattanayak D; Dhar S; Lal SK; Singh D
    Plants (Basel); 2021 Oct; 10(10):. PubMed ID: 34685934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic resistance induced by rhizosphere bacteria.
    van Loon LC; Bakker PA; Pieterse CM
    Annu Rev Phytopathol; 1998; 36():453-83. PubMed ID: 15012509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants.
    Khoshru B; Mitra D; Joshi K; Adhikari P; Rion MSI; Fadiji AE; Alizadeh M; Priyadarshini A; Senapati A; Sarikhani MR; Panneerselvam P; Mohapatra PKD; Sushkova S; Minkina T; Keswani C
    Heliyon; 2023 Mar; 9(3):e13825. PubMed ID: 36873502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review.
    Zehra A; Raytekar NA; Meena M; Swapnil P
    Curr Res Microb Sci; 2021 Dec; 2():100054. PubMed ID: 34841345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Utility of Plant Growth-Promoting Rhizobacteria as Biological Control Agents towards Plant-Parasitic Nematodes.
    Subedi P; Gattoni K; Liu W; Lawrence KS; Park SW
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32916856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and Phenotypic Responses of Rhizobacteria-Treated Tomato Plants to
    Shakeri Sharaf Abad Sofla A; Taheri H; Ghodoum Parizipour MH; Soleymani F
    Iran J Biotechnol; 2023 Jan; 21(1):e3220. PubMed ID: 36811104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis.
    Verhagen BW; Glazebrook J; Zhu T; Chang HS; van Loon LC; Pieterse CM
    Mol Plant Microbe Interact; 2004 Aug; 17(8):895-908. PubMed ID: 15305611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Significance of
    Miljaković D; Marinković J; Balešević-Tubić S
    Microorganisms; 2020 Jul; 8(7):. PubMed ID: 32668676
    [No Abstract]   [Full Text] [Related]  

  • 13. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review.
    Oleńska E; Małek W; Wójcik M; Swiecicka I; Thijs S; Vangronsveld J
    Sci Total Environ; 2020 Nov; 743():140682. PubMed ID: 32758827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria.
    Hsu CK; Micallef SA
    Int J Food Microbiol; 2017 Oct; 259():1-6. PubMed ID: 28778009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research advances in plant growth-promoting rhizobacteria and its application prospects].
    Hu J; Xue D; Ma C; Wang S
    Ying Yong Sheng Tai Xue Bao; 2004 Oct; 15(10):1963-6. PubMed ID: 15624845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle.
    Léon-Kloosterziel KM; Verhagen BW; Keurentjes JJ; VanPelt JA; Rep M; VanLoon LC; Pieterse CM
    Plant Mol Biol; 2005 Mar; 57(5):731-48. PubMed ID: 15988566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana.
    van Wees SC; de Swart EA; van Pelt JA; van Loon LC; Pieterse CM
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8711-6. PubMed ID: 10890883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation.
    Lau ET; Tani A; Khew CY; Chua YQ; Hwang SS
    Microbiol Res; 2020 Nov; 240():126549. PubMed ID: 32688172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR).
    Choudhary DK; Johri BN
    Microbiol Res; 2009; 164(5):493-513. PubMed ID: 18845426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana.
    Ryu CM; Murphy JF; Reddy MS; Kloepper JW
    J Microbiol Biotechnol; 2007 Feb; 17(2):280-6. PubMed ID: 18051759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.