These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Induced systemic resistance (ISR) in plants: mechanism of action. Choudhary DK; Prakash A; Johri BN Indian J Microbiol; 2007 Dec; 47(4):289-97. PubMed ID: 23100680 [TBL] [Abstract][Full Text] [Related]
3. Hashem A; Tabassum B; Fathi Abd Allah E Saudi J Biol Sci; 2019 Sep; 26(6):1291-1297. PubMed ID: 31516360 [TBL] [Abstract][Full Text] [Related]
4. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Meena M; Swapnil P; Divyanshu K; Kumar S; Harish ; Tripathi YN; Zehra A; Marwal A; Upadhyay RS J Basic Microbiol; 2020 Oct; 60(10):828-861. PubMed ID: 32815221 [TBL] [Abstract][Full Text] [Related]
5. Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease. Kashyap AS; Manzar N; Rajawat MVS; Kesharwani AK; Singh RP; Dubey SC; Pattanayak D; Dhar S; Lal SK; Singh D Plants (Basel); 2021 Oct; 10(10):. PubMed ID: 34685934 [TBL] [Abstract][Full Text] [Related]
6. Systemic resistance induced by rhizosphere bacteria. van Loon LC; Bakker PA; Pieterse CM Annu Rev Phytopathol; 1998; 36():453-83. PubMed ID: 15012509 [TBL] [Abstract][Full Text] [Related]
7. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Khoshru B; Mitra D; Joshi K; Adhikari P; Rion MSI; Fadiji AE; Alizadeh M; Priyadarshini A; Senapati A; Sarikhani MR; Panneerselvam P; Mohapatra PKD; Sushkova S; Minkina T; Keswani C Heliyon; 2023 Mar; 9(3):e13825. PubMed ID: 36873502 [TBL] [Abstract][Full Text] [Related]
8. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Zehra A; Raytekar NA; Meena M; Swapnil P Curr Res Microb Sci; 2021 Dec; 2():100054. PubMed ID: 34841345 [TBL] [Abstract][Full Text] [Related]
9. Current Utility of Plant Growth-Promoting Rhizobacteria as Biological Control Agents towards Plant-Parasitic Nematodes. Subedi P; Gattoni K; Liu W; Lawrence KS; Park SW Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32916856 [TBL] [Abstract][Full Text] [Related]
10. Molecular and Phenotypic Responses of Rhizobacteria-Treated Tomato Plants to Shakeri Sharaf Abad Sofla A; Taheri H; Ghodoum Parizipour MH; Soleymani F Iran J Biotechnol; 2023 Jan; 21(1):e3220. PubMed ID: 36811104 [TBL] [Abstract][Full Text] [Related]
11. The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. Verhagen BW; Glazebrook J; Zhu T; Chang HS; van Loon LC; Pieterse CM Mol Plant Microbe Interact; 2004 Aug; 17(8):895-908. PubMed ID: 15305611 [TBL] [Abstract][Full Text] [Related]
12. The Significance of Miljaković D; Marinković J; Balešević-Tubić S Microorganisms; 2020 Jul; 8(7):. PubMed ID: 32668676 [No Abstract] [Full Text] [Related]
13. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Oleńska E; Małek W; Wójcik M; Swiecicka I; Thijs S; Vangronsveld J Sci Total Environ; 2020 Nov; 743():140682. PubMed ID: 32758827 [TBL] [Abstract][Full Text] [Related]
14. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria. Hsu CK; Micallef SA Int J Food Microbiol; 2017 Oct; 259():1-6. PubMed ID: 28778009 [TBL] [Abstract][Full Text] [Related]
15. [Research advances in plant growth-promoting rhizobacteria and its application prospects]. Hu J; Xue D; Ma C; Wang S Ying Yong Sheng Tai Xue Bao; 2004 Oct; 15(10):1963-6. PubMed ID: 15624845 [TBL] [Abstract][Full Text] [Related]
16. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Léon-Kloosterziel KM; Verhagen BW; Keurentjes JJ; VanPelt JA; Rep M; VanLoon LC; Pieterse CM Plant Mol Biol; 2005 Mar; 57(5):731-48. PubMed ID: 15988566 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. van Wees SC; de Swart EA; van Pelt JA; van Loon LC; Pieterse CM Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8711-6. PubMed ID: 10890883 [TBL] [Abstract][Full Text] [Related]
18. Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Lau ET; Tani A; Khew CY; Chua YQ; Hwang SS Microbiol Res; 2020 Nov; 240():126549. PubMed ID: 32688172 [TBL] [Abstract][Full Text] [Related]
19. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Choudhary DK; Johri BN Microbiol Res; 2009; 164(5):493-513. PubMed ID: 18845426 [TBL] [Abstract][Full Text] [Related]
20. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. Ryu CM; Murphy JF; Reddy MS; Kloepper JW J Microbiol Biotechnol; 2007 Feb; 17(2):280-6. PubMed ID: 18051759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]