BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23411612)

  • 1. Periplasmic binding protein-based detection of maltose using liposomes: a new class of biorecognition elements in competitive assays.
    Edwards KA; Baeumner AJ
    Anal Chem; 2013 Mar; 85(5):2770-8. PubMed ID: 23411612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maltose-binding protein: a versatile platform for prototyping biosensing.
    Medintz IL; Deschamps JR
    Curr Opin Biotechnol; 2006 Feb; 17(1):17-27. PubMed ID: 16413768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Detection of Thiamine Using Periplasmic Binding Protein-Based Biorecognition.
    Edwards KA; Seog WJ; Han L; Feder S; Kraft CE; Baeumner AJ
    Anal Chem; 2016 Aug; 88(16):8248-56. PubMed ID: 27460839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells.
    Ha JS; Song JJ; Lee YM; Kim SJ; Sohn JH; Shin CS; Lee SG
    Appl Environ Microbiol; 2007 Nov; 73(22):7408-14. PubMed ID: 17890334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratiometric analyses at critical temperatures can magnify the signal intensity of FRET-based sugar sensors with periplasmic binding proteins.
    Gam J; Ha JS; Kim H; Lee DH; Lee J; Lee SG
    Biosens Bioelectron; 2015 Oct; 72():37-43. PubMed ID: 25957075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General strategy for biosensor design and construction employing multifunctional surface-tethered components.
    Medintz IL; Anderson GP; Lassman ME; Goldman ER; Bettencourt LA; Mauro JM
    Anal Chem; 2004 Oct; 76(19):5620-9. PubMed ID: 15456279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescence resonance energy transfer sensor based on maltose binding protein.
    Medintz IL; Goldman ER; Lassman ME; Mauro JM
    Bioconjug Chem; 2003; 14(5):909-18. PubMed ID: 13129393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal liposomes: preparation and usage for the detection of mRNA.
    Edwards KA; Curtis KL; Sailor JL; Baeumner AJ
    Anal Bioanal Chem; 2008 Jul; 391(5):1689-702. PubMed ID: 18327569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled nanoscale biosensors based on quantum dot FRET donors.
    Medintz IL; Clapp AR; Mattoussi H; Goldman ER; Fisher B; Mauro JM
    Nat Mater; 2003 Sep; 2(9):630-8. PubMed ID: 12942071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.
    Iijima I; Hohsaka T
    Chembiochem; 2009 Apr; 10(6):999-1006. PubMed ID: 19301314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer sandwich assays: human α-thrombin detection using liposome enhancement.
    Edwards KA; Wang Y; Baeumner AJ
    Anal Bioanal Chem; 2010 Nov; 398(6):2645-54. PubMed ID: 20596697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of heterogeneous assays using fluorescent magnetic liposomes.
    Edwards KA; Baeumner AJ
    Anal Chem; 2014 Jul; 86(13):6610-6. PubMed ID: 24941245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New trends in bio/nanotechnology: stable proteins as advanced molecular tools for health and environment.
    Staiano M; Baldassarre M; Esposito M; Apicella E; Vitale R; Aurilia V; D'Auria S
    Environ Technol; 2010; 31(8-9):935-42. PubMed ID: 20662382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a reagentless glucose biosensor using molecular exciton luminescence.
    Der BS; Dattelbaum JD
    Anal Biochem; 2008 Apr; 375(1):132-40. PubMed ID: 18082614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor.
    Dacres H; Michie M; Anderson A; Trowell SC
    Biosens Bioelectron; 2013 Mar; 41():459-64. PubMed ID: 23083905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor.
    Chaudhary A; McShane MJ; Srivastava R
    Analyst; 2010 Oct; 135(10):2620-8. PubMed ID: 20689896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive turn-on biosensors by regulating fluorescent dye assembly on liposome surfaces.
    Seo S; Kwon MS; Phillips AW; Seo D; Kim J
    Chem Commun (Camb); 2015 Jun; 51(50):10229-32. PubMed ID: 26022090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein.
    Saxl T; Khan F; Ferla M; Birch D; Pickup J
    Analyst; 2011 Mar; 136(5):968-72. PubMed ID: 21165474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptides, antibodies, and FRET on beads in flow cytometry: A model system using fluoresceinated and biotinylated beta-endorphin.
    Buranda T; Lopez GP; Keij J; Harris R; Sklar LA
    Cytometry; 1999 Sep; 37(1):21-31. PubMed ID: 10451503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform.
    Long F; Gu C; Gu AZ; Shi H
    Anal Chem; 2012 Apr; 84(8):3646-53. PubMed ID: 22455400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.