BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23412072)

  • 1. Effect of graphene on growth of neuroblastoma cells.
    Park HB; Nam HG; Oh HG; Kim JH; Kim CM; Song KS; Jhee KH
    J Microbiol Biotechnol; 2013 Feb; 23(2):274-7. PubMed ID: 23412072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma.
    Yuan YG; Wang YH; Xing HH; Gurunathan S
    Int J Nanomedicine; 2017; 12():5819-5839. PubMed ID: 28860751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells.
    Jarosz A; Skoda M; Dudek I; Szukiewicz D
    Oxid Med Cell Longev; 2016; 2016():5851035. PubMed ID: 26649139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiofrequency ablation of drug-resistant cancer cells using molecularly targeted carboxyl-functionalized biodegradable graphene.
    Sasidharan A; Sivaram AJ; Retnakumari AP; Chandran P; Malarvizhi GL; Nair S; Koyakutty M
    Adv Healthc Mater; 2015 Apr; 4(5):679-84. PubMed ID: 25586821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells.
    Song Q; Jiang Z; Li N; Liu P; Liu L; Tang M; Cheng G
    Biomaterials; 2014 Aug; 35(25):6930-40. PubMed ID: 24875763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Graphene on Nonneuronal and Neuronal Cell Viability and Stress.
    Rastogi SK; Raghavan G; Yang G; Cohen-Karni T
    Nano Lett; 2017 May; 17(5):3297-3301. PubMed ID: 28383278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot exfoliation, functionalization, and size manipulation of graphene sheets: efficient system for biomedical applications.
    Bani F; Bodaghi A; Dadkhah A; Movahedi S; Bodaghabadi N; Sadeghizadeh M; Adeli M
    Lasers Med Sci; 2018 May; 33(4):795-802. PubMed ID: 29264722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of SH-SY5Y human neuroblastoma cell growth over glass and SU-8 substrates.
    Ajetunmobi A; McAllister D; Jain N; Brazil O; Corvin A; Volkov Y; Tropea D; Prina-Mello A
    J Biomed Mater Res A; 2017 Aug; 105(8):2129-2138. PubMed ID: 28371423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of crystalline quality on neuronal affinity of pristine graphene.
    Veliev F; Briançon-Marjollet A; Bouchiat V; Delacour C
    Biomaterials; 2016 Apr; 86():33-41. PubMed ID: 26878439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.
    Mari E; Mardente S; Morgante E; Tafani M; Lococo E; Fico F; Valentini F; Zicari A
    Int J Mol Sci; 2016 Nov; 17(12):. PubMed ID: 27916824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioapplications of graphene constructed functional nanomaterials.
    Gulzar A; Yang P; He F; Xu J; Yang D; Xu L; Jan MO
    Chem Biol Interact; 2017 Jan; 262():69-89. PubMed ID: 27876601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Area of Graphene Governs Its Neurotoxicity.
    Taşdemir Ş; Morçimen ZG; Doğan AA; Görgün C; Şendemir A
    ACS Biomater Sci Eng; 2023 Jun; 9(6):3297-3305. PubMed ID: 37201186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxicity assessment of MDA-MB-231 breast cancer cells on screen-printed graphene-carbon paste substrate.
    Waiwijit U; Kandhavivorn W; Oonkhanond B; Lomas T; Phokaratkul D; Wisitsoraat A; Tuantranont A
    Colloids Surf B Biointerfaces; 2014 Jan; 113():190-7. PubMed ID: 24090714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents.
    Mazzoccoli C; Ruggieri V; Tataranni T; Agriesti F; Laurenzana I; Fratello A; Capitanio N; Piccoli C
    Oncotarget; 2016 May; 7(18):26235-46. PubMed ID: 27036033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line.
    Lv M; Zhang Y; Liang L; Wei M; Hu W; Li X; Huang Q
    Nanoscale; 2012 Jul; 4(13):3861-6. PubMed ID: 22653613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of neurons derived from mouse P19, rat PC12 and human SH-SY5Y cells in the assessment of chemical- and toxin-induced neurotoxicity.
    Popova D; Karlsson J; Jacobsson SOP
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):42. PubMed ID: 28583171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery-A comparative study.
    Deb A; R V
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2320-2333. PubMed ID: 29055699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility of pristine graphene for neuronal interface.
    Sahni D; Jea A; Mata JA; Marcano DC; Sivaganesan A; Berlin JM; Tatsui CE; Sun Z; Luerssen TG; Meng S; Kent TA; Tour JM
    J Neurosurg Pediatr; 2013 May; 11(5):575-83. PubMed ID: 23473006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-Based Interfaces Do Not Alter Target Nerve Cells.
    Fabbro A; Scaini D; León V; Vázquez E; Cellot G; Privitera G; Lombardi L; Torrisi F; Tomarchio F; Bonaccorso F; Bosi S; Ferrari AC; Ballerini L; Prato M
    ACS Nano; 2016 Jan; 10(1):615-23. PubMed ID: 26700626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.