These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 23412470)
1. An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene). Wu J; Yue G; Xiao Y; Lin J; Huang M; Lan Z; Tang Q; Huang Y; Fan L; Yin S; Sato T Sci Rep; 2013; 3():1283. PubMed ID: 23412470 [TBL] [Abstract][Full Text] [Related]
2. Lithium doped poly(3-hexylthiophene) for efficient hole transporter and sensitizer in metal free quaterthiophene dye treated hybrid solar cells. Pirashanthan A; Velauthapillai D; Robertson N; Ravirajan P Sci Rep; 2021 Oct; 11(1):20157. PubMed ID: 34635778 [TBL] [Abstract][Full Text] [Related]
3. Roles of Interfacial Modifiers in Inorganic Titania/Organic Poly(3-hexylthiophene) Heterojunction Hybrid Solar Cells. Pirashanthan A; Kajana T; Velauthapillai D; Shivatharsiny Y; Bentouba S; Ravirajan P Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269308 [TBL] [Abstract][Full Text] [Related]
4. High-performance nanostructured inorganic-organic heterojunction solar cells. Chang JA; Rhee JH; Im SH; Lee YH; Kim HJ; Seok SI; Nazeeruddin MK; Gratzel M Nano Lett; 2010 Jul; 10(7):2609-12. PubMed ID: 20509686 [TBL] [Abstract][Full Text] [Related]
5. Comparative Charge Transport Study of MEHPPV-TiO₂ and P3HT-TiO₂ Nanocomposites for Hybrid Bulk Heterojunction Solar Cells. Kumar S; Sharma SN; Kumar J J Nanosci Nanotechnol; 2019 Jun; 19(6):3408-3419. PubMed ID: 30744768 [TBL] [Abstract][Full Text] [Related]
6. High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer. Nia NY; Matteocci F; Cina L; Di Carlo A ChemSusChem; 2017 Oct; 10(19):3854-3860. PubMed ID: 28556618 [TBL] [Abstract][Full Text] [Related]
7. Layer-by-layer assembled multilayer TiO(x) for efficient electron acceptor in polymer hybrid solar cells. Kang H; Lee C; Yoon SC; Cho CH; Cho J; Kim BJ Langmuir; 2010 Nov; 26(22):17589-95. PubMed ID: 20925374 [TBL] [Abstract][Full Text] [Related]
9. Hybrid density functional study on the electronic structures and properties of P3HT-PbS and P3HT-CdS hybrid interface for photovoltaic applications. Nguyen TP; Shim JH J Comput Chem; 2018 Sep; 39(24):1990-1999. PubMed ID: 30315588 [TBL] [Abstract][Full Text] [Related]
10. Doping Strategy for Efficient and Stable Triple Cation Hybrid Perovskite Solar Cells and Module Based on Poly(3-hexylthiophene) Hole Transport Layer. Yaghoobi Nia N; Lamanna E; Zendehdel M; Palma AL; Zurlo F; Castriotta LA; Di Carlo A Small; 2019 Dec; 15(49):e1904399. PubMed ID: 31592571 [TBL] [Abstract][Full Text] [Related]
11. End-group functionalization of poly(3-hexylthiophene) as an efficient route to photosensitize nanocrystalline TiO2 films for photovoltaic applications. Krüger RA; Gordon TJ; Baumgartner T; Sutherland TC ACS Appl Mater Interfaces; 2011 Jun; 3(6):2031-41. PubMed ID: 21563756 [TBL] [Abstract][Full Text] [Related]
12. All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers. Nam S; Shin M; Park S; Lee S; Kim H; Kim Y Phys Chem Chem Phys; 2012 Nov; 14(43):15046-53. PubMed ID: 23034534 [TBL] [Abstract][Full Text] [Related]
13. Hybrid solar cells from MDMO-PPV and silicon nanocrystals. Liu CY; Kortshagen UR Nanoscale; 2012 Jul; 4(13):3963-8. PubMed ID: 22660893 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Perovskite Solar Cell with Fe Shin SG; Kim S; Bark CW; Choi HW J Nanosci Nanotechnol; 2020 Jan; 20(1):552-556. PubMed ID: 31383209 [TBL] [Abstract][Full Text] [Related]
15. In Situ Growth of Metal Sulfide Nanocrystals in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Films for Inverted Hybrid Solar Cells with Enhanced Photocurrent. Yang C; Sun Y; Li X; Li C; Tong J; Li J; Zhang P; Xia Y Nanoscale Res Lett; 2018 Jun; 13(1):184. PubMed ID: 29926214 [TBL] [Abstract][Full Text] [Related]
16. Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. Kim CH; Cha SH; Kim SC; Song M; Lee J; Shin WS; Moon SJ; Bahng JH; Kotov NA; Jin SH ACS Nano; 2011 Apr; 5(4):3319-25. PubMed ID: 21438626 [TBL] [Abstract][Full Text] [Related]
17. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array. Liao WP; Wu JJ J Phys Chem Lett; 2013 Jun; 4(11):1983-8. PubMed ID: 26283138 [TBL] [Abstract][Full Text] [Related]
18. Enhancing performance of P3HT:TiO₂ solar cells using doped and surface modified TiO₂ nanorods. Tu YC; Lim H; Chang CY; Shyue JJ; Su WF J Colloid Interface Sci; 2015 Jun; 448():315-9. PubMed ID: 25746184 [TBL] [Abstract][Full Text] [Related]
19. A Quarterthiophene-Based Dye as an Efficient Interface Modifier for Hybrid Titanium Dioxide/Poly(3-hexylthiophene)(P3HT) Solar Cells. Pirashanthan A; Murugathas T; Robertson N; Ravirajan P; Velauthapillai D Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31731443 [TBL] [Abstract][Full Text] [Related]
20. The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells. Ichikawa T; Shiratori S J Nanosci Nanotechnol; 2012 May; 12(5):3725-31. PubMed ID: 22852300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]