BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23412470)

  • 21. Understanding the improved stability of hybrid polymer solar cells fabricated with copper electrodes.
    Reeja-Jayan B; Manthiram A
    ACS Appl Mater Interfaces; 2011 May; 3(5):1492-501. PubMed ID: 21449611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.
    Ghadirzadeh A; Passoni L; Grancini G; Terraneo G; Li Bassi A; Petrozza A; Di Fonzo F
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7451-5. PubMed ID: 25822757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite.
    Chen L; Pan X; Zheng D; Gao Y; Jiang X; Xu M; Chen H
    Nanotechnology; 2010 Aug; 21(34):345201. PubMed ID: 20671361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.
    Lee TH; Sue HJ; Cheng X
    Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels.
    Chang JA; Im SH; Lee YH; Kim HJ; Lim CS; Heo JH; Seok SI
    Nano Lett; 2012 Apr; 12(4):1863-7. PubMed ID: 22401668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Infiltration of polymer hole-conductor into mesoporous titania structures for solid-state dye-sensitized solar cells.
    Rawolle M; Sarkar K; Niedermeier MA; Schindler M; Lellig P; Gutmann JS; Moulin JF; Haese-Seiller M; Wochnik AS; Scheu C; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):719-29. PubMed ID: 23273246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Performance of Nanoporous Titanium Dioxide Solar Cells Using Cadmium Sulfide and Poly(3-hexylthiophene) Co-Sensitizers.
    Thanihaichelvan M; Kodikara MMPS; Ravirajan P; Velauthapillai D
    Polymers (Basel); 2017 Sep; 9(10):. PubMed ID: 30965770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers.
    Abrusci A; Stranks SD; Docampo P; Yip HL; Jen AK; Snaith HJ
    Nano Lett; 2013 Jul; 13(7):3124-8. PubMed ID: 23772773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ternary blend hybrid solar cells incorporating wide and narrow bandgap polymers.
    Kim HD; Ohkita H; Benten H; Ito S
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17551-5. PubMed ID: 25244405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual functions of YF₃:Eu³⁺ for improving photovoltaic performance of dye-sensitized solar cells.
    Wu J; Wang J; Lin J; Xiao Y; Yue G; Huang M; Lan Z; Huang Y; Fan L; Yin S; Sato T
    Sci Rep; 2013; 3():2058. PubMed ID: 23792787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers.
    Chen HW; Huang TY; Chang TH; Sanehira Y; Kung CW; Chu CW; Ikegami M; Miyasaka T; Ho KC
    Sci Rep; 2016 Oct; 6():34319. PubMed ID: 27698464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. P3HT as hole transport material and assistant light absorber in CdS quantum dots-sensitized solid-state solar cells.
    Qian J; Liu QS; Li G; Jiang KJ; Yang LM; Song Y
    Chem Commun (Camb); 2011 Jun; 47(22):6461-3. PubMed ID: 21552591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Core-shell nanophosphor architecture: toward efficient energy transport in inorganic/organic hybrid solar cells.
    Li Q; Yuan Y; Chen Z; Jin X; Wei TH; Li Y; Qin Y; Sun W
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12798-807. PubMed ID: 24967836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells.
    Peng Y; Song G; Hu X; He G; Chen Z; Xu X; Hu J
    Nanoscale Res Lett; 2013 Feb; 8(1):106. PubMed ID: 23442609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of polymer purification on the efficiency of poly(3-hexylthiophene):fullerene organic solar cells.
    Bannock JH; Treat ND; Chabinyc M; Stingelin N; Heeney M; de Mello JC
    Sci Rep; 2016 Mar; 6():23651. PubMed ID: 27029994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells.
    Yang L; Cappel UB; Unger EL; Karlsson M; Karlsson KM; Gabrielsson E; Sun L; Boschloo G; Hagfeldt A; Johansson EM
    Phys Chem Chem Phys; 2012 Jan; 14(2):779-89. PubMed ID: 22116450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor.
    Lei H; Yang G; Guo Y; Xiong L; Qin P; Dai X; Zheng X; Ke W; Tao H; Chen Z; Li B; Fang G
    Phys Chem Chem Phys; 2016 Jun; 18(24):16436-43. PubMed ID: 27264190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conjugated polymer P3HT-Au hybrid nanostructures for enhancing photocatalytic activity.
    Jana B; Bhattacharyya S; Patra A
    Phys Chem Chem Phys; 2015 Jun; 17(23):15392-9. PubMed ID: 26008182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.
    Xu W; Tan F; Liu X; Zhang W; Qu S; Wang Z; Wang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):11. PubMed ID: 28058645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oligothiophene interlayer effect on photocurrent generation for hybrid TiO(2)/P3HT solar cells.
    Planells M; Abate A; Snaith HJ; Robertson N
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17226-35. PubMed ID: 25233009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.