BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23412547)

  • 1. The effects of 4 different recovery strategies on repeat sprint-cycling performance.
    Argus CK; Driller MW; Ebert TR; Martin DT; Halson SL
    Int J Sports Physiol Perform; 2013 Sep; 8(5):542-8. PubMed ID: 23412547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated sprint ability but not neuromuscular fatigue is dependent on short versus long duration recovery time between sprints in healthy males.
    Monks MR; Compton CT; Yetman JD; Power KE; Button DC
    J Sci Med Sport; 2017 Jun; 20(6):600-605. PubMed ID: 27825551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of wearing lower body compression garments during a cycling performance test.
    Driller MW; Halson SL
    Int J Sports Physiol Perform; 2013 May; 8(3):300-6. PubMed ID: 23006643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pneumatic Compression Fails to Improve Performance Recovery in Trained Cyclists.
    Overmayer RG; Driller MW
    Int J Sports Physiol Perform; 2018 Apr; 13(4):490-495. PubMed ID: 28872381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure of glycine-arginine-α-ketoisocaproic acid to improve high-intensity exercise performance in trained cyclists.
    Beis L; Mohammad Y; Easton C; Pitsiladis YP
    Int J Sport Nutr Exerc Metab; 2011 Feb; 21(1):33-9. PubMed ID: 21411833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of ionized and nonionized compression garments on sprint and endurance cycling.
    Burden RJ; Glaister M
    J Strength Cond Res; 2012 Oct; 26(10):2837-43. PubMed ID: 22124356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of active recovery on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK; Graham CM; Louis G
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):461-9. PubMed ID: 8954294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical fitness and performance. Fatigue responses during repeated sprints matched for initial mechanical output.
    Mendez-Villanueva A; Hamer P; Bishop D
    Med Sci Sports Exerc; 2007 Dec; 39(12):2219-25. PubMed ID: 18046194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearing compression tights post-exercise enhances recovery hemodynamics and subsequent cycling performance.
    Lee DCW; Sheridan S; Ali A; Sutanto D; Wong SHS
    Eur J Appl Physiol; 2021 Jul; 121(7):2091-2100. PubMed ID: 33835198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of passive versus active recovery on power output over six repeated wingate sprints.
    Lopez EI; Smoliga JM; Zavorsky GS
    Res Q Exerc Sport; 2014 Dec; 85(4):519-26. PubMed ID: 25412134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling.
    Broatch JR; Bishop DJ; Halson S
    Int J Sports Physiol Perform; 2018 Aug; 13(7):882-890. PubMed ID: 29252067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sprint cycling performance is maintained with short-term contrast water immersion.
    Crampton D; Donne B; Egaña M; Warmington SA
    Med Sci Sports Exerc; 2011 Nov; 43(11):2180-8. PubMed ID: 21502898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses to maximal 4 s sprint interval cycling using inertial loading: the influence of inter-sprint recovery duration.
    Vardarli E; Satiroglu R; Allen JR; Bjellquist-Ledger R; Burton HM; Coyle EF
    Eur J Appl Physiol; 2021 Aug; 121(8):2295-2304. PubMed ID: 33974126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydrogen rich water on prolonged intermittent exercise.
    Da Ponte A; Giovanelli N; Nigris D; Lazzer S
    J Sports Med Phys Fitness; 2018 May; 58(5):612-621. PubMed ID: 28474871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of contrast water therapy duration on recovery of cycling performance: a dose-response study.
    Versey N; Halson S; Dawson B
    Eur J Appl Physiol; 2011 Jan; 111(1):37-46. PubMed ID: 20809231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man.
    Bogdanis GC; Nevill ME; Boobis LH; Lakomy HK; Nevill AM
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):467-80. PubMed ID: 7714837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Ischemic Preconditioning on Repeated Sprint Cycling Performance.
    Patterson SD; Bezodis NE; Glaister M; Pattison JR
    Med Sci Sports Exerc; 2015 Aug; 47(8):1652-8. PubMed ID: 25412297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Carbohydrate Ingestion and Carbohydrate Mouth Rinse on Repeat Sprint Performance.
    Krings BM; Peterson TJ; Shepherd BD; McAllister MJ; Smith JW
    Int J Sport Nutr Exerc Metab; 2017 Jun; 27(3):204-212. PubMed ID: 28182508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of resistive load on performance and surface EMG activity during repeated cycling sprints on a non-isokinetic cycle ergometer.
    Matsuura R; Arimitsu T; Yunoki T; Yano T
    Br J Sports Med; 2011 Aug; 45(10):820-4. PubMed ID: 19952377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.