BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23412547)

  • 41. High-intensity cycling re-warm up within a very short time-frame increases the subsequent intermittent sprint performance.
    Yanaoka T; Hamada Y; Fujihira K; Yamamoto R; Iwata R; Miyashita M; Hirose N
    Eur J Sport Sci; 2020 Nov; 20(10):1307-1317. PubMed ID: 31914360
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One Week of L-Citrulline Supplementation Improves Performance in Trained Cyclists.
    Stanelle ST; McLaughlin KL; Crouse SF
    J Strength Cond Res; 2020 Mar; 34(3):647-652. PubMed ID: 31860534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of recovery duration after heavy resistance exercise on sprint cycling performance.
    Thatcher R; Gifford R; Howatson G
    J Strength Cond Res; 2012 Nov; 26(11):3089-94. PubMed ID: 22190162
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Peak power output provides the most reliable measure of performance in prolonged intermittent-sprint cycling.
    Hayes M; Smith D; Castle PC; Watt PW; Ross EZ; Maxwell NS
    J Sports Sci; 2013; 31(5):565-72. PubMed ID: 23176342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic and performance effects of warm-up intensity on sprint cycling.
    Wittekind A; Beneke R
    Scand J Med Sci Sports; 2011 Dec; 21(6):e201-7. PubMed ID: 21129035
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of hyperoxia on repeated sprint cycling performance & muscle fatigue.
    Porter MS; Fenton J; Reed KE
    J Sci Med Sport; 2019 Dec; 22(12):1344-1348. PubMed ID: 31337587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of run training and cold-water immersion on subsequent cycle training quality in high-performance triathletes.
    Rowsell GJ; Reaburn P; Toone R; Smith M; Coutts AJ
    J Strength Cond Res; 2014 Jun; 28(6):1664-72. PubMed ID: 24626137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of a caffeine mouth rinse on sprint cycling following glycogen depletion.
    Kizzi J; Sum A; Houston FE; Hayes LD
    Eur J Sport Sci; 2016 Nov; 16(8):1087-94. PubMed ID: 27686403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Sprint Interval Cycling on Fatigue, Energy, and Cerebral Oxygenation.
    Monroe DC; Gist NH; Freese EC; O'Connor PJ; McCully KK; Dishman RK
    Med Sci Sports Exerc; 2016 Apr; 48(4):615-24. PubMed ID: 26559448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of inserted long rest periods during repeated sprint exercise on performance adaptation.
    Ikutomo A; Kasai N; Goto K
    Eur J Sport Sci; 2018 Feb; 18(1):47-53. PubMed ID: 29032729
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of gender on fatigue and recovery following maximal intensity repeated sprint performance.
    Laurent CM; Green JM; Bishop PA; Sjökvist J; Schumacker RE; Richardson MT; Curtner-Smith M
    J Sports Med Phys Fitness; 2010 Sep; 50(3):243-53. PubMed ID: 20842083
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potentiation of sprint cycling performance: the effects of a high-inertia ergometer warm-up.
    Munro LA; Stannard SR; Fink PW; Foskett A
    J Sports Sci; 2017 Jul; 35(14):1442-1450. PubMed ID: 27483990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions.
    Kay D; Marino FE; Cannon J; St Clair Gibson A; Lambert MI; Noakes TD
    Eur J Appl Physiol; 2001; 84(1-2):115-21. PubMed ID: 11394239
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Does hydrotherapy help or hinder adaptation to training in competitive cyclists?
    Halson SL; Bartram J; West N; Stephens J; Argus CK; Driller MW; Sargent C; Lastella M; Hopkins WG; Martin DT
    Med Sci Sports Exerc; 2014 Aug; 46(8):1631-9. PubMed ID: 24504431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of Including Sprints in LIT Sessions during a 14-d Camp on Muscle Biology and Performance Measures in Elite Cyclists.
    Almquist NW; Wilhelmsen M; Ellefsen S; Sandbakk Ø; Rønnestad BR
    Med Sci Sports Exerc; 2021 Nov; 53(11):2333-2345. PubMed ID: 34081058
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The reliability and validity of fatigue measures during short-duration maximal-intensity intermittent cycling.
    Glaister M; Stone MH; Stewart AM; Hughes M; Moir GL
    J Strength Cond Res; 2004 Aug; 18(3):459-62. PubMed ID: 15320670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. External muscle heating during warm-up does not provide added performance benefit above external heating in the recovery period alone.
    Faulkner SH; Ferguson RA; Hodder SG; Havenith G
    Eur J Appl Physiol; 2013 Nov; 113(11):2713-21. PubMed ID: 23974847
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of duration of active or passive recovery on performance and muscle oxygenation during intermittent sprint cycling exercise.
    Ohya T; Aramaki Y; Kitagawa K
    Int J Sports Med; 2013 Jul; 34(7):616-22. PubMed ID: 23325717
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The physiological effects of low-intensity neuromuscular electrical stimulation (NMES) on short-term recovery from supra-maximal exercise bouts in male triathletes.
    Malone JK; Coughlan GF; Crowe L; Gissane GC; Caulfield B
    Eur J Appl Physiol; 2012 Jul; 112(7):2421-32. PubMed ID: 22045413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Can the Lamberts and Lambert Submaximal Cycle Test Indicate Fatigue and Recovery in Trained Cyclists?
    Hammes D; Skorski S; Schwindling S; Ferrauti A; Pfeiffer M; Kellmann M; Meyer T
    Int J Sports Physiol Perform; 2016 Apr; 11(3):328-36. PubMed ID: 26263163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.