BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23412707)

  • 1. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES).
    Tsai CS; Echevarría-Vega ME; Sotiriou GA; Santeufemio C; Schmidt D; Demokritou P; Ellenbecker M
    J Nanopart Res; 2012 May; 14(5):. PubMed ID: 23412707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capture, isolation and electrochemical detection of industrially-relevant engineered aerosol nanoparticles using poly (amic) acid, phase-inverted, nano-membranes.
    Okello VA; Gass S; Pyrgiotakis G; Du N; Lake A; Kariuki V; Sotiriou GA; Addolorato J; Demokritou P; Sadik OA
    J Hazard Mater; 2014 Aug; 279():365-74. PubMed ID: 25080157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies.
    Demokritou P; Büchel R; Molina RM; Deloid GM; Brain JD; Pratsinis SE
    Inhal Toxicol; 2010 Dec; 22 Suppl 2(0 2):107-16. PubMed ID: 20701428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air cleaning technologies: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(17):1-52. PubMed ID: 23074468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of filter media for particle number, surface area and mass penetrations.
    Li L; Zuo Z; Japuntich DA; Pui DY
    Ann Occup Hyg; 2012 Jul; 56(5):581-94. PubMed ID: 22752097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occupational exposure to airborne nanomaterials: An assessment of worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fab and subfab.
    Brenner SA; Neu-Baker NM; Caglayan C; Zurbenko IG
    J Occup Environ Hyg; 2016 Sep; 13(9):D138-47. PubMed ID: 27135871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility.
    Brenner SA; Neu-Baker NM; Eastlake AC; Beaucham CC; Geraci CL
    J Occup Environ Hyg; 2016 Nov; 13(11):871-80. PubMed ID: 27171535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-body nanoparticle aerosol inhalation exposures.
    Yi J; Chen BT; Schwegler-Berry D; Frazer D; Castranova V; McBride C; Knuckles TL; Stapleton PA; Minarchick VC; Nurkiewicz TR
    J Vis Exp; 2013 May; (75):e50263. PubMed ID: 23685643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Nanoparticle-Cell Interactions in Physiological Media by Atomic Force Microscopy.
    Pyrgiotakis G; Blattmann CO; Demokritou P
    ACS Sustain Chem Eng; 2014 Jul; 2(7):1681-1690. PubMed ID: 25068097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.
    Alderman SL; Parsons MS; Hogancamp KU; Waggoner CA
    J Occup Environ Hyg; 2008 Nov; 5(11):713-20. PubMed ID: 18726819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety.
    Peters TM; Elzey S; Johnson R; Park H; Grassian VH; Maher T; O'Shaughnessy P
    J Occup Environ Hyg; 2009 Feb; 6(2):73-81. PubMed ID: 19034793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.
    Arunkumar R; Hogancamp KU; Parsons MS; Rogers DM; Norton OP; Nagel BA; Alderman SL; Waggoner CA
    Rev Sci Instrum; 2007 Aug; 78(8):085105. PubMed ID: 17764353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters.
    Tsai CS; Hofmann M; Hallock M; Ellenbecker M; Kong J
    J Air Waste Manag Assoc; 2015 Nov; 65(11):1376-85. PubMed ID: 26484976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a self-cleaning dispersion and exposure chamber: application to the monitoring of simulated accidents involving the generation of airborne nanoparticles.
    Clemente A; Lobera MP; Balas F; Santamaria J
    J Hazard Mater; 2014 Sep; 280():226-34. PubMed ID: 25156720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiO2 aerosol nanoparticle reactor for occupational health and safety studies.
    Ostraat ML; Swain KA; Krajewski JJ
    J Occup Environ Hyg; 2008 Jun; 5(6):390-8. PubMed ID: 18428032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recirculating air filtration significantly reduces exposure to airborne nanoparticles.
    Pui DY; Qi C; Stanley N; Oberdörster G; Maynard A
    Environ Health Perspect; 2008 Jul; 116(7):863-6. PubMed ID: 18629306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.