These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 23412708)
1. Ferrous iron chelating property of low-molecular weight succinoglycans isolated from Sinorhizobium meliloti. Cho E; Choi JM; Kim H; Tahir MN; Choi Y; Jung S Biometals; 2013 Apr; 26(2):321-8. PubMed ID: 23412708 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. Wang LX; Wang Y; Pellock B; Walker GC J Bacteriol; 1999 Nov; 181(21):6788-96. PubMed ID: 10542182 [TBL] [Abstract][Full Text] [Related]
3. Intermolecular complexation of low-molecular-weight succinoglycans directs solubility enhancement of pindolol. Kim K; Cho E; Choi JM; Kim H; Jang A; Choi Y; Lee IS; Yu JH; Jung S Carbohydr Polym; 2014 Jun; 106():101-8. PubMed ID: 24721056 [TBL] [Abstract][Full Text] [Related]
4. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric behavior of succinoglycan monomers, dimers, and trimers isolated from Sinorhizobium meliloti 1021. Kwon C; Lee S; Jung S Carbohydr Res; 2011 Oct; 346(14):2308-14. PubMed ID: 21840515 [TBL] [Abstract][Full Text] [Related]
5. Enantiomeric separation of some flavanones using shinorhizobial linear octasaccharides in CE. Kwon C; Paik SR; Jung S Electrophoresis; 2008 Nov; 29(20):4284-90. PubMed ID: 18924103 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767 [TBL] [Abstract][Full Text] [Related]
10. Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. Lehman AP; Long SR J Bacteriol; 2013 Dec; 195(23):5362-9. PubMed ID: 24078609 [TBL] [Abstract][Full Text] [Related]
11. Production of succinoglycan polymer in Sinorhizobium meliloti is affected by SMb21506 and requires the N-terminal domain of ExoP. Jofré E; Becker A Mol Plant Microbe Interact; 2009 Dec; 22(12):1656-68. PubMed ID: 19888830 [TBL] [Abstract][Full Text] [Related]
12. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011. Viguier C; O Cuív P; Clarke P; O'Connell M FEMS Microbiol Lett; 2005 May; 246(2):235-42. PubMed ID: 15899411 [TBL] [Abstract][Full Text] [Related]
13. Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. Bandyopadhyay S; Peralta-Videa JR; Plascencia-Villa G; José-Yacamán M; Gardea-Torresdey JL J Hazard Mater; 2012 Nov; 241-242():379-86. PubMed ID: 23083939 [TBL] [Abstract][Full Text] [Related]
14. Structural analysis of succinoglycan oligosaccharides from Sinorhizobium meliloti strains with different host compatibility phenotypes. Simsek S; Wood K; Reuhs BL J Bacteriol; 2013 May; 195(9):2032-8. PubMed ID: 23457246 [TBL] [Abstract][Full Text] [Related]
15. Sinorhizobium meliloti 1021 loss-of-function deletion mutation in chvI and its phenotypic characteristics. Wang C; Kemp J; Da Fonseca IO; Equi RC; Sheng X; Charles TC; Sobral BW Mol Plant Microbe Interact; 2010 Feb; 23(2):153-60. PubMed ID: 20064059 [TBL] [Abstract][Full Text] [Related]
16. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions. Jensen JB; Ampomah OY; Darrah R; Peters NK; Bhuvaneswari TV Mol Plant Microbe Interact; 2005 Jul; 18(7):694-702. PubMed ID: 16042015 [TBL] [Abstract][Full Text] [Related]
17. Chiral separation and discrimination of catechin by sinorhizobial octasaccharides in capillary electrophoresis and (13)C NMR spectroscopy. Kwon C; Yoo KM; Jung S Carbohydr Res; 2009 Jul; 344(11):1347-51. PubMed ID: 19524876 [TBL] [Abstract][Full Text] [Related]
18. Development of real-time PCR assay for detection and quantification of Sinorhizobium meliloti in soil and plant tissue. Trabelsi D; Pini F; Aouani ME; Bazzicalupo M; Mengoni A Lett Appl Microbiol; 2009 Mar; 48(3):355-61. PubMed ID: 19207854 [TBL] [Abstract][Full Text] [Related]
19. Null mutations in Sinorhizobium meliloti exoS and chvI demonstrate the importance of this two-component regulatory system for symbiosis. Bélanger L; Dimmick KA; Fleming JS; Charles TC Mol Microbiol; 2009 Dec; 74(5):1223-37. PubMed ID: 19843226 [TBL] [Abstract][Full Text] [Related]
20. Overproduction and increased molecular weight account for the symbiotic activity of the rkpZ-modified K polysaccharide from Sinorhizobium meliloti Rm1021. Sharypova LA; Chataigné G; Fraysse N; Becker A; Poinsot V Glycobiology; 2006 Dec; 16(12):1181-93. PubMed ID: 16957092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]