These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23412844)

  • 41. Mycobacterium tuberculosis SigM positively regulates Esx secreted protein and nonribosomal peptide synthetase genes and down regulates virulence-associated surface lipid synthesis.
    Raman S; Puyang X; Cheng TY; Young DC; Moody DB; Husson RN
    J Bacteriol; 2006 Dec; 188(24):8460-8. PubMed ID: 17028284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inactivation of Mycobacterium tuberculosis mannosyltransferase pimB reduces the cell wall lipoarabinomannan and lipomannan content and increases the rate of bacterial-induced human macrophage cell death.
    Torrelles JB; DesJardin LE; MacNeil J; Kaufman TM; Kutzbach B; Knaup R; McCarthy TR; Gurcha SS; Besra GS; Clegg S; Schlesinger LS
    Glycobiology; 2009 Jul; 19(7):743-55. PubMed ID: 19318518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mycobacterium tuberculosis Serine/Threonine Protein Kinases.
    Prisic S; Husson RN
    Microbiol Spectr; 2014 Oct; 2(5):. PubMed ID: 25429354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The conserved hypothetical protein Rv0574c is required for cell wall integrity, stress tolerance, and virulence of Mycobacterium tuberculosis.
    Garg R; Tripathi D; Kant S; Chandra H; Bhatnagar R; Banerjee N
    Infect Immun; 2015 Jan; 83(1):120-9. PubMed ID: 25312955
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis.
    Gaur RL; Ren K; Blumenthal A; Bhamidi S; González-Nilo FD; Jackson M; Zare RN; Ehrt S; Ernst JD; Banaei N
    PLoS Pathog; 2014 Sep; 10(9):e1004376. PubMed ID: 25232742
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis.
    Mori M; Sammartino JC; Costantino L; Gelain A; Meneghetti F; Villa S; Chiarelli LR
    Curr Top Med Chem; 2019; 19(9):646-661. PubMed ID: 30827246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell population heterogeneity in Mycobacterium tuberculosis H37Rv.
    Andreu N; Gibert I
    Tuberculosis (Edinb); 2008 Nov; 88(6):553-9. PubMed ID: 18502178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The largest open reading frame (pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis.
    Sirakova TD; Dubey VS; Kim HJ; Cynamon MH; Kolattukudy PE
    Infect Immun; 2003 Jul; 71(7):3794-801. PubMed ID: 12819062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis.
    Sirakova TD; Dubey VS; Cynamon MH; Kolattukudy PE
    J Bacteriol; 2003 May; 185(10):2999-3008. PubMed ID: 12730158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mycobacterium tuberculosis protein kinase K enables growth adaptation through translation control.
    Malhotra V; Okon BP; Clark-Curtiss JE
    J Bacteriol; 2012 Aug; 194(16):4184-96. PubMed ID: 22661693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage.
    Osman MM; Pagán AJ; Shanahan JK; Ramakrishnan L
    PLoS One; 2020; 15(7):e0233252. PubMed ID: 32701962
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Propionate prevents loss of the PDIM virulence lipid in Mycobacterium tuberculosis.
    Mulholland CV; Wiggins TJ; Cui J; Vilchèze C; Rajagopalan S; Shultis MW; Reyes-Fernández EZ; Jacobs WR; Berney M
    Nat Microbiol; 2024 Jun; 9(6):1607-1618. PubMed ID: 38740932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphorylation-dependent interaction between a serine/threonine kinase PknA and a putative cell division protein Wag31 in Mycobacterium tuberculosis.
    Lee JJ; Kan CM; Lee JH; Park KS; Jeon JH; Lee SH
    New Microbiol; 2014 Oct; 37(4):525-33. PubMed ID: 25387290
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spontaneous phthiocerol dimycocerosate-deficient variants of Mycobacterium tuberculosis are susceptible to gamma interferon-mediated immunity.
    Kirksey MA; Tischler AD; Siméone R; Hisert KB; Uplekar S; Guilhot C; McKinney JD
    Infect Immun; 2011 Jul; 79(7):2829-38. PubMed ID: 21576344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transposon mutagenesis of Mb0100 at the ppe1-nrp locus in Mycobacterium bovis disrupts phthiocerol dimycocerosate (PDIM) and glycosylphenol-PDIM biosynthesis, producing an avirulent strain with vaccine properties at least equal to those of M. bovis BCG.
    Hotter GS; Wards BJ; Mouat P; Besra GS; Gomes J; Singh M; Bassett S; Kawakami P; Wheeler PR; de Lisle GW; Collins DM
    J Bacteriol; 2005 Apr; 187(7):2267-77. PubMed ID: 15774869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis.
    Siméone R; Léger M; Constant P; Malaga W; Marrakchi H; Daffé M; Guilhot C; Chalut C
    FEBS J; 2010 Jun; 277(12):2715-25. PubMed ID: 20553505
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations.
    Källenius G; Correia-Neves M; Buteme H; Hamasur B; Svenson SB
    Tuberculosis (Edinb); 2016 Jan; 96():120-30. PubMed ID: 26586646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response.
    Briken V; Porcelli SA; Besra GS; Kremer L
    Mol Microbiol; 2004 Jul; 53(2):391-403. PubMed ID: 15228522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of a novel alpha(1-->6) mannopyranosyltransferase MptB from Corynebacterium glutamicum by deletion of a conserved gene, NCgl1505, affords a lipomannan- and lipoarabinomannan-deficient mutant.
    Mishra AK; Alderwick LJ; Rittmann D; Wang C; Bhatt A; Jacobs WR; Takayama K; Eggeling L; Besra GS
    Mol Microbiol; 2008 Jun; 68(6):1595-613. PubMed ID: 18452585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.