These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 23413041)
41. Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs. Lee HJ; Koh WG ACS Appl Mater Interfaces; 2014 Jun; 6(12):9338-48. PubMed ID: 24915062 [TBL] [Abstract][Full Text] [Related]
42. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells. Karadzic I; Vucic V; Jokanovic V; Debeljak-Martacic J; Markovic D; Petrovic S; Glibetic M J Biomed Mater Res A; 2015 Jan; 103(1):350-7. PubMed ID: 24665062 [TBL] [Abstract][Full Text] [Related]
43. Osteogenic differentiation of mesenchymal stem cells in fibrin-hydroxyapatite matrix in a 3-dimensional mesh scaffold. Jung O; Hanken H; Smeets R; Hartjen P; Friedrich RE; Schwab B; Gröbe A; Heiland M; Al-Dam A; Eichhorn W; Sehner S; Kolk A; Wöltje M; Stein JM In Vivo; 2014; 28(4):477-82. PubMed ID: 24982212 [TBL] [Abstract][Full Text] [Related]
44. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Leferink AM; Santos D; Karperien M; Truckenmüller RK; van Blitterswijk CA; Moroni L Integr Biol (Camb); 2015 Dec; 7(12):1574-86. PubMed ID: 26566169 [TBL] [Abstract][Full Text] [Related]
45. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240 [TBL] [Abstract][Full Text] [Related]
46. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Lai GJ; Shalumon KT; Chen SH; Chen JP Carbohydr Polym; 2014 Oct; 111():288-97. PubMed ID: 25037354 [TBL] [Abstract][Full Text] [Related]
47. Poly(L-lactide-co-glycolide) scaffolds coated with collagen and glycosaminoglycans: impact on proliferation and osteogenic differentiation of human mesenchymal stem cells. Wojak-Cwik IM; Hintze V; Schnabelrauch M; Moeller S; Dobrzynski P; Pamula E; Scharnweber D J Biomed Mater Res A; 2013 Nov; 101(11):3109-22. PubMed ID: 23526792 [TBL] [Abstract][Full Text] [Related]
48. Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Zhou GS; Su ZY; Cai YR; Liu YK; Dai LC; Tang RK; Zhang M Biomed Mater Eng; 2007; 17(6):387-95. PubMed ID: 18032820 [TBL] [Abstract][Full Text] [Related]
49. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Gandhimathi C; Venugopal J; Ravichandran R; Sundarrajan S; Suganya S; Ramakrishna S Macromol Biosci; 2013 Jun; 13(6):696-706. PubMed ID: 23529905 [TBL] [Abstract][Full Text] [Related]
50. In vitro characterization of polyesters of aconitic acid, glycerol, and cinnamic acid for bone tissue engineering. Kanitkar A; Chen C; Smoak M; Hogan K; Scherr T; Aita G; Hayes D J Biomater Appl; 2015 Mar; 29(8):1075-85. PubMed ID: 25281649 [TBL] [Abstract][Full Text] [Related]
51. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing. Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498 [TBL] [Abstract][Full Text] [Related]
52. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637 [TBL] [Abstract][Full Text] [Related]
53. Sequential application of mineralized electroconductive scaffold and electrical stimulation for efficient osteogenesis. Oftadeh MO; Bakhshandeh B; Dehghan MM; Khojasteh A J Biomed Mater Res A; 2018 May; 106(5):1200-1210. PubMed ID: 29271055 [TBL] [Abstract][Full Text] [Related]
54. Fabrication of multi-biofunctional gelatin-based electrospun fibrous scaffolds for enhancement of osteogenesis of mesenchymal stem cells. Lin WH; Yu J; Chen G; Tsai WB Colloids Surf B Biointerfaces; 2016 Feb; 138():26-31. PubMed ID: 26642073 [TBL] [Abstract][Full Text] [Related]
56. Effects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds. Sellgren KL; Ma T J Biomed Mater Res A; 2015 Aug; 103(8):2509-20. PubMed ID: 25504617 [TBL] [Abstract][Full Text] [Related]
57. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Wang H; Li Y; Zuo Y; Li J; Ma S; Cheng L Biomaterials; 2007 Aug; 28(22):3338-48. PubMed ID: 17481726 [TBL] [Abstract][Full Text] [Related]
58. Bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposite films mimic hierarchy of natural bone. Khanna R; Katti KS; Katti DR Acta Biomater; 2011 Mar; 7(3):1173-83. PubMed ID: 21034863 [TBL] [Abstract][Full Text] [Related]
59. PLGA-collagen-ECM hybrid scaffolds functionalized with biomimetic extracellular matrices secreted by mesenchymal stem cells during stepwise osteogenesis-co-adipogenesis. Chen Y; Lee K; Kawazoe N; Yang Y; Chen G J Mater Chem B; 2019 Dec; 7(45):7195-7206. PubMed ID: 31660577 [TBL] [Abstract][Full Text] [Related]
60. Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold. Krishnamurithy G; Murali MR; Hamdi M; Abbas AA; Raghavendran HB; Kamarul T Regen Med; 2015; 10(5):579-90. PubMed ID: 26237702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]