These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 23413086)
1. Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold. Kim BS; Kim JS; Lee J J Biomed Mater Res A; 2013 Sep; 101(9):2661-6. PubMed ID: 23413086 [TBL] [Abstract][Full Text] [Related]
2. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration. Kim BS; Sung HM; You HK; Lee J J Biosci Bioeng; 2014 Oct; 118(4):469-75. PubMed ID: 24768229 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342 [TBL] [Abstract][Full Text] [Related]
4. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Wu C; Miron R; Sculean A; Kaskel S; Doert T; Schulze R; Zhang Y Biomaterials; 2011 Oct; 32(29):7068-78. PubMed ID: 21704367 [TBL] [Abstract][Full Text] [Related]
5. Comparison of platelet rich fibrin and collagen as osteoblast-seeded scaffolds for bone tissue engineering applications. Gassling V; Hedderich J; Açil Y; Purcz N; Wiltfang J; Douglas T Clin Oral Implants Res; 2013 Mar; 24(3):320-8. PubMed ID: 22092514 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051 [TBL] [Abstract][Full Text] [Related]
7. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering. Solovieva EV; Fedotov AY; Mamonov VE; Komlev VS; Panteleyev AA Biomed Mater; 2018 Jan; 13(2):025007. PubMed ID: 28972200 [TBL] [Abstract][Full Text] [Related]
8. Odontogenic responses of human dental pulp cells to collagen/nanobioactive glass nanocomposites. Bae WJ; Min KS; Kim JJ; Kim JJ; Kim HW; Kim EC Dent Mater; 2012 Dec; 28(12):1271-9. PubMed ID: 23031484 [TBL] [Abstract][Full Text] [Related]
9. The effects of fibrinogen concentration on fibrin/atelocollagen composite gel: an in vitro and in vivo study in rabbit calvarial bone defect. Kim BS; Kim HJ; Choi JG; You HK; Lee J Clin Oral Implants Res; 2015 Nov; 26(11):1302-8. PubMed ID: 25039258 [TBL] [Abstract][Full Text] [Related]
10. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
11. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. Prosecká E; Rampichová M; Vojtová L; Tvrdík D; Melčáková S; Juhasová J; Plencner M; Jakubová R; Jančář J; Nečas A; Kochová P; Klepáček J; Tonar Z; Amler E J Biomed Mater Res A; 2011 Nov; 99(2):307-15. PubMed ID: 21858919 [TBL] [Abstract][Full Text] [Related]
12. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds]. Kong LJ; Ao Q; Xi J; Zhang L; Gong YD; Zhao NM; Zhang XF Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):262-7. PubMed ID: 17460899 [TBL] [Abstract][Full Text] [Related]
13. Osteoblastic cellular responses on ionically crosslinked chitosan-tripolyphosphate fibrous 3-D mesh scaffolds. Pati F; Kalita H; Adhikari B; Dhara S J Biomed Mater Res A; 2013 Sep; 101(9):2526-37. PubMed ID: 23359556 [TBL] [Abstract][Full Text] [Related]
14. Tissue scaffolds mimicking hierarchical bone morphology as biomaterials for oral maxillofacial surgery with augmentation: structure, properties, and performance evaluation for Thonglam J; Nuntanaranont T; Kong X; Meesane J Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39094618 [TBL] [Abstract][Full Text] [Related]
15. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Murphy CM; Haugh MG; O'Brien FJ Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008 [TBL] [Abstract][Full Text] [Related]
16. Gelatin sponges (Gelfoam) as a scaffold for osteoblasts. Rohanizadeh R; Swain MV; Mason RS J Mater Sci Mater Med; 2008 Mar; 19(3):1173-82. PubMed ID: 17701305 [TBL] [Abstract][Full Text] [Related]
17. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
18. Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Arpornmaeklong P; Suwatwirote N; Pripatnanont P; Oungbho K Int J Oral Maxillofac Surg; 2007 Apr; 36(4):328-37. PubMed ID: 17223012 [TBL] [Abstract][Full Text] [Related]
19. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Amruthwar SS; Janorkar AV Dent Mater; 2013 Feb; 29(2):211-20. PubMed ID: 23127995 [TBL] [Abstract][Full Text] [Related]
20. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]