These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23413348)

  • 1. Structural biological materials: critical mechanics-materials connections.
    Meyers MA; McKittrick J; Chen PY
    Science; 2013 Feb; 339(6121):773-9. PubMed ID: 23413348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness.
    Giesa T; Arslan M; Pugno NM; Buehler MJ
    Nano Lett; 2011 Nov; 11(11):5038-46. PubMed ID: 21967633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spider silk as a load bearing biomaterial: tailoring mechanical properties via structural modifications.
    Brown CP; Rosei F; Traversa E; Licoccia S
    Nanoscale; 2011 Mar; 3(3):870-6. PubMed ID: 21212901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical simulations for the design of supertough nanofibers inspired by spider silk.
    Bosia F; Buehler MJ; Pugno NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056103. PubMed ID: 21230541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of mechanical properties and structural design of spider web.
    Ko FK; Jovicic J
    Biomacromolecules; 2004; 5(3):780-5. PubMed ID: 15132661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.
    Buehler MJ; Ackbarow T
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):595-607. PubMed ID: 18803059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk fiber mechanics from multiscale force distribution analysis.
    Cetinkaya M; Xiao S; Markert B; Stacklies W; Gräter F
    Biophys J; 2011 Mar; 100(5):1298-305. PubMed ID: 21354403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads.
    Hagenau A; Papadopoulos P; Kremer F; Scheibel T
    J Struct Biol; 2011 Sep; 175(3):339-47. PubMed ID: 21627993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separating the influence of the cortex and foam on the mechanical properties of porcupine quills.
    Yang W; McKittrick J
    Acta Biomater; 2013 Nov; 9(11):9065-74. PubMed ID: 23872514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure analysis of porcupine quills under axial compression reveals their mechanical response during buckling.
    Torres FG; Troncoso OP; Diaz J; Arce D
    J Mech Behav Biomed Mater; 2014 Nov; 39():111-8. PubMed ID: 25123434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-memory biopolymers based on β-sheet structures of polyalanine segments inspired by spider silks.
    Huang H; Hu J; Zhu Y
    Macromol Biosci; 2013 Feb; 13(2):161-6. PubMed ID: 23213001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biopolymers: shape memory in spider draglines.
    Emile O; Le Floch A; Vollrath F
    Nature; 2006 Mar; 440(7084):621. PubMed ID: 16572162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanics of silk nanostructures under varied mechanical loading.
    Bratzel G; Buehler MJ
    Biopolymers; 2012 Jun; 97(6):408-17. PubMed ID: 22020792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rough fibrils provide a toughening mechanism in biological fibers.
    Brown CP; Harnagea C; Gill HS; Price AJ; Traversa E; Licoccia S; Rosei F
    ACS Nano; 2012 Mar; 6(3):1961-9. PubMed ID: 22324287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastrong and Bioactive Nanostructured Bio-Based Composites.
    Mittal N; Jansson R; Widhe M; Benselfelt T; Håkansson KMO; Lundell F; Hedhammar M; Söderberg LD
    ACS Nano; 2017 May; 11(5):5148-5159. PubMed ID: 28475843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.
    Bratzel G; Buehler MJ
    J Mech Behav Biomed Mater; 2012 Mar; 7():30-40. PubMed ID: 22340682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus.
    Blackledge TA; Swindeman JE; Hayashi CY
    J Exp Biol; 2005 May; 208(Pt 10):1937-49. PubMed ID: 15879074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Along the silk road, spiders make way for mussels.
    Carrington E
    Trends Biotechnol; 2008 Feb; 26(2):55-7. PubMed ID: 18191258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.