These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23413348)

  • 21. Design of superior spider silk: from nanostructure to mechanical properties.
    Du N; Liu XY; Narayanan J; Li L; Lim ML; Li D
    Biophys J; 2006 Dec; 91(12):4528-35. PubMed ID: 16950851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the amino acid sequence on thermal conduction through β-sheet crystals of natural silk protein.
    Zhang L; Bai Z; Ban H; Liu L
    Phys Chem Chem Phys; 2015 Nov; 17(43):29007-13. PubMed ID: 26455593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of loading rate on mechanical properties and fracture morphology of spider silk.
    Hudspeth M; Nie X; Chen W; Lewis R
    Biomacromolecules; 2012 Aug; 13(8):2240-6. PubMed ID: 22780301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of salt and shear on the storage and assembly of spider silk proteins.
    Eisoldt L; Hardy JG; Heim M; Scheibel TR
    J Struct Biol; 2010 May; 170(2):413-9. PubMed ID: 20045467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spider dragline silk: correlated and mosaic evolution in high-performance biological materials.
    Swanson BO; Blackledge TA; Summers AP; Hayashi CY
    Evolution; 2006 Dec; 60(12):2539-51. PubMed ID: 17263115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scrutinizing the datasets obtained from nanoscale features of spider silk fibres.
    Silva LP; Rech EL
    Sci Data; 2014; 1():140040. PubMed ID: 25977795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk.
    Keten S; Xu Z; Ihle B; Buehler MJ
    Nat Mater; 2010 Apr; 9(4):359-67. PubMed ID: 20228820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins.
    Heim M; Römer L; Scheibel T
    Chem Soc Rev; 2010 Jan; 39(1):156-64. PubMed ID: 20023846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The weak interfaces within tough natural composites: experiments on three types of nacre.
    Khayer Dastjerdi A; Rabiei R; Barthelat F
    J Mech Behav Biomed Mater; 2013 Mar; 19():50-60. PubMed ID: 23084045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sacrificial bonds and hidden length in biomaterials: a kinetic constitutive description of strength and toughness in bone.
    Lieou CK; Elbanna AE; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012703. PubMed ID: 23944488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder--the peacock's tail coverts shaft and its components.
    Liu ZQ; Jiao D; Meyers MA; Zhang ZF
    Acta Biomater; 2015 Apr; 17():137-51. PubMed ID: 25662166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Greatly increased toughness of infiltrated spider silk.
    Lee SM; Pippel E; Gösele U; Dresbach C; Qin Y; Chandran CV; Bräuniger T; Hause G; Knez M
    Science; 2009 Apr; 324(5926):488-92. PubMed ID: 19390040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation.
    Vehoff T; Glisović A; Schollmeyer H; Zippelius A; Salditt T
    Biophys J; 2007 Dec; 93(12):4425-32. PubMed ID: 17766337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergetic material and structure optimization yields robust spider web anchorages.
    Pugno NM; Cranford SW; Buehler MJ
    Small; 2013 Aug; 9(16):2747-56. PubMed ID: 23585296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres.
    Lin S; Ryu S; Tokareva O; Gronau G; Jacobsen MM; Huang W; Rizzo DJ; Li D; Staii C; Pugno NM; Wong JY; Kaplan DL; Buehler MJ
    Nat Commun; 2015 May; 6():6892. PubMed ID: 26017575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Invited review liquid crystal models of biological materials and silk spinning.
    Rey AD; Herrera-Valencia EE
    Biopolymers; 2012 Jun; 97(6):374-96. PubMed ID: 21994072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-Inspired Multiscale Design for Strong and Tough Biological Ionogels.
    Cao K; Zhu Y; Zheng Z; Cheng W; Zi Y; Zeng S; Zhao D; Yu H
    Adv Sci (Weinh); 2023 May; 10(13):e2207233. PubMed ID: 36905237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.
    Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):542-52. PubMed ID: 18651614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How cellulose stretches: synergism between covalent and hydrogen bonding.
    Altaner CM; Thomas LH; Fernandes AN; Jarvis MC
    Biomacromolecules; 2014 Mar; 15(3):791-8. PubMed ID: 24568640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.