These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23413348)

  • 41. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.
    Guinea GV; Elices M; Pérez-Rigueiro J; Plaza GR
    J Exp Biol; 2005 Jan; 208(Pt 1):25-30. PubMed ID: 15601874
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.
    Lin N; Liu XY
    Chem Soc Rev; 2015 Nov; 44(21):7881-915. PubMed ID: 26214062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unravelling the biodiversity of nanoscale signatures of spider silk fibres.
    Silva LP; Rech EL
    Nat Commun; 2013; 4():3014. PubMed ID: 24345771
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spider silk as a novel high performance biomimetic muscle driven by humidity.
    Agnarsson I; Dhinojwala A; Sahni V; Blackledge TA
    J Exp Biol; 2009 Jul; 212(Pt 13):1990-4. PubMed ID: 19525423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design.
    Wei X; Naraghi M; Espinosa HD
    ACS Nano; 2012 Mar; 6(3):2333-44. PubMed ID: 22316210
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori.
    Mortimer B; Guan J; Holland C; Porter D; Vollrath F
    Acta Biomater; 2015 Jan; 11():247-55. PubMed ID: 25242653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoconfinement and the strength of biopolymers.
    Giesa T; Buehler MJ
    Annu Rev Biophys; 2013; 42():651-73. PubMed ID: 23654307
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Jul; 209(Pt 13):2452-61. PubMed ID: 16788028
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The hidden link between supercontraction and mechanical behavior of spider silks.
    Elices M; Plaza GR; Pérez-Rigueiro J; Guinea GV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):658-69. PubMed ID: 21565714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microstructures and mechanical properties of silks of silkworm and honeybee.
    Zhang K; Si FW; Duan HL; Wang J
    Acta Biomater; 2010 Jun; 6(6):2165-71. PubMed ID: 20026439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural stiffening increases flaw tolerance of biological fibers.
    Giesa T; Pugno NM; Buehler MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041902. PubMed ID: 23214610
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical chain model of spider capture silk elasticity.
    Zhou H; Zhang Y
    Phys Rev Lett; 2005 Jan; 94(2):028104. PubMed ID: 15698235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The critical role of water in spider silk and its consequence for protein mechanics.
    Brown CP; Macleod J; Amenitsch H; Cacho-Nerin F; Gill HS; Price AJ; Traversa E; Licoccia S; Rosei F
    Nanoscale; 2011 Sep; 3(9):3805-11. PubMed ID: 21837334
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution.
    Zhang F; You X; Dou H; Liu Z; Zuo B; Zhang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3352-61. PubMed ID: 25603225
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supercontraction of dragline silk spun by lynx spiders (Oxyopidae).
    Pérez-Rigueiro J; Plaza GR; Torres FG; Hijar A; Hayashi C; Perea GB; Elices M; Guinea GV
    Int J Biol Macromol; 2010 Jun; 46(5):555-7. PubMed ID: 20359492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glycopolymer functionalization of engineered spider silk protein-based materials for improved cell adhesion.
    Hardy JG; Pfaff A; Leal-Egaña A; Müller AH; Scheibel TR
    Macromol Biosci; 2014 Jul; 14(7):936-42. PubMed ID: 24700586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A structural view on spider silk proteins and their role in fiber assembly.
    Hagn F
    J Pept Sci; 2012 Jun; 18(6):357-65. PubMed ID: 22570231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A study of the extraordinarily strong and tough silk produced by bagworms.
    Yoshioka T; Tsubota T; Tashiro K; Jouraku A; Kameda T
    Nat Commun; 2019 Apr; 10(1):1469. PubMed ID: 30931923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 60. What's inside the box? - Length-scales that govern fracture processes of polymer fibers.
    Giesa T; Pugno NM; Wong JY; Kaplan DL; Buehler MJ
    Adv Mater; 2014 Jan; 26(3):412-7. PubMed ID: 24431127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.