These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23413351)

  • 1. Similarity of scattering rates in metals showing T-linear resistivity.
    Bruin JA; Sakai H; Perry RS; Mackenzie AP
    Science; 2013 Feb; 339(6121):804-7. PubMed ID: 23413351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.
    Hu T; Liu Y; Xiao H; Mu G; Yang YF
    Sci Rep; 2017 Aug; 7(1):9469. PubMed ID: 28842685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strange metal transport realized by gauge/gravity duality.
    Faulkner T; Iqbal N; Liu H; McGreevy J; Vegh D
    Science; 2010 Aug; 329(5995):1043-7. PubMed ID: 20688983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear-in temperature resistivity from an isotropic Planckian scattering rate.
    Grissonnanche G; Fang Y; Legros A; Verret S; Laliberté F; Collignon C; Zhou J; Graf D; Goddard PA; Taillefer L; Ramshaw BJ
    Nature; 2021 Jul; 595(7869):667-672. PubMed ID: 34321673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mottness collapse and T-linear resistivity in cuprate superconductors.
    Phillips P
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1574-98. PubMed ID: 21422016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alternative theory on relaxation rates in cuprate superconductors.
    Luo N; Miley GH
    J Phys Condens Matter; 2009 Jan; 21(2):025701. PubMed ID: 21813989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic-field induced quantum critical point in YbRh(2)Si(2).
    Gegenwart P; Custers J; Geibel C; Neumaier K; Tayama T; Tenya K; Trovarelli O; Steglich F
    Phys Rev Lett; 2002 Jul; 89(5):056402. PubMed ID: 12144454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials.
    Sachdev S; Metlitski MA; Punk M
    J Phys Condens Matter; 2012 Jul; 24(29):294205. PubMed ID: 22773369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice.
    Kim MS; Aronson MC
    J Phys Condens Matter; 2011 Apr; 23(16):164204. PubMed ID: 21471619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetoresistance in paramagnetic heavy fermion metals.
    Parihari D; Vidhyadhiraja NS
    J Phys Condens Matter; 2009 Oct; 21(40):405602. PubMed ID: 21832420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are Heavy Fermion Strange Metals Planckian?
    Taupin M; Paschen S
    Crystals (Basel); 2022 Feb; 12(2):251. PubMed ID: 35910592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-Critical Resistivity of Strange Metals in a Magnetic Field.
    Varma CM
    Phys Rev Lett; 2022 May; 128(20):206601. PubMed ID: 35657895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermi-liquid breakdown in the paramagnetic phase of a pure metal.
    Doiron-Leyraud N; Walker IR; Taillefer L; Steiner MJ; Julian SR; Lonzarich GG
    Nature; 2003 Oct; 425(6958):595-9. PubMed ID: 14534580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Critical Quasiparticle Scattering within the Superconducting State of CeCoIn_{5}.
    Paglione J; Tanatar MA; Reid JP; Shakeripour H; Petrovic C; Taillefer L
    Phys Rev Lett; 2016 Jul; 117(1):016601. PubMed ID: 27419578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hall-effect evolution across a heavy-fermion quantum critical point.
    Paschen S; Lühmann T; Wirth S; Gegenwart P; Trovarelli O; Geibel C; Steglich F; Coleman P; Si Q
    Nature; 2004 Dec; 432(7019):881-5. PubMed ID: 15602556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The scaled-invariant Planckian metal and quantum criticality in Ce
    Chang YY; Lei H; Petrovic C; Chung CH
    Nat Commun; 2023 Feb; 14(1):581. PubMed ID: 36737608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective.
    Xu W; Haule K; Kotliar G
    Phys Rev Lett; 2013 Jul; 111(3):036401. PubMed ID: 23909344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor.
    Hussey NE; Abdel-Jawad M; Carrington A; Mackenzie AP; Balicas L
    Nature; 2003 Oct; 425(6960):814-7. PubMed ID: 14574406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between structural properties and resistivity critical behavior in SrRuO3 thin films.
    Galdi A; Orgiani P; Maritato L; Méchin L
    J Phys Condens Matter; 2012 Oct; 24(43):435603. PubMed ID: 23041787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the in-plane Fermi surface topology in high T(c) superconductors using angle-dependent magnetic quantum oscillations.
    Harrison N; McDonald RD
    J Phys Condens Matter; 2009 May; 21(19):192201. PubMed ID: 21825471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.