These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 23413882)
1. Effect of signaling probe conformation on sensor performance of a displacement-based electrochemical DNA sensor. Yu ZG; Lai RY Anal Chem; 2013 Mar; 85(6):3340-6. PubMed ID: 23413882 [TBL] [Abstract][Full Text] [Related]
2. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors. Yu ZG; Zaitouna AJ; Lai RY Anal Chim Acta; 2014 Feb; 812():176-83. PubMed ID: 24491779 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors. Lai RY; Walker B; Stormberg K; Zaitouna AJ; Yang W Methods; 2013 Dec; 64(3):267-75. PubMed ID: 23933234 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry. Yang W; Lai RY Langmuir; 2011 Dec; 27(23):14669-77. PubMed ID: 21981414 [TBL] [Abstract][Full Text] [Related]
5. Effect of diluent chain length on the performance of the electrochemical DNA sensor at elevated temperature. Yang W; Lai RY Analyst; 2011 Jan; 136(1):134-9. PubMed ID: 20927441 [TBL] [Abstract][Full Text] [Related]
6. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor. Wu Y; Lai RY Anal Chem; 2014 Sep; 86(17):8888-95. PubMed ID: 25110351 [TBL] [Abstract][Full Text] [Related]
7. Signal-on electrochemical Y or junction probe detection of nucleic acid. Shen Z; Nakayama S; Semancik S; Sintim HO Chem Commun (Camb); 2012 Aug; 48(61):7580-2. PubMed ID: 22735181 [TBL] [Abstract][Full Text] [Related]
8. Amplified detection of femtomolar DNA based on a one-to-few recognition reaction between DNA-Au conjugate and target DNA. Wang Z; Zhang J; Zhu C; Wu S; Mandler D; Marks RS; Zhang H Nanoscale; 2014 Mar; 6(6):3110-5. PubMed ID: 24488333 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization. Wan Y; Wang P; Su Y; Zhu X; Yang S; Lu J; Gao J; Fan C; Huang Q Biosens Bioelectron; 2014 May; 55():231-6. PubMed ID: 24384265 [TBL] [Abstract][Full Text] [Related]
10. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry. Guerreiro GV; Zaitouna AJ; Lai RY Anal Chim Acta; 2014 Jan; 810():79-85. PubMed ID: 24439508 [TBL] [Abstract][Full Text] [Related]
11. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor. Gao F; Du L; Zhang Y; Tang D; Du Y Anal Chim Acta; 2015 Jul; 883():67-73. PubMed ID: 26088778 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of extra amino acids in peptide recognition probe to improve specificity and selectivity of an electrochemical peptide-based sensor. Zaitouna AJ; Maben AJ; Lai RY Anal Chim Acta; 2015 Jul; 886():157-64. PubMed ID: 26320648 [TBL] [Abstract][Full Text] [Related]
13. A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy. Lin C; Wu Y; Luo F; Chen D; Chen X Biosens Bioelectron; 2014 Sep; 59():365-9. PubMed ID: 24752147 [TBL] [Abstract][Full Text] [Related]
14. DNA-mediated strand displacement facilitates sensitive electronic detection of antibodies in human serums. Dou B; Yang J; Shi K; Yuan R; Xiang Y Biosens Bioelectron; 2016 Sep; 83():156-61. PubMed ID: 27111124 [TBL] [Abstract][Full Text] [Related]
15. Folding- and Dynamics-Based Electrochemical DNA Sensors. Lai RY Methods Enzymol; 2017; 589():221-252. PubMed ID: 28336065 [TBL] [Abstract][Full Text] [Related]
16. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor. Yu X; Yu Z; Li F; Xu Y; He X; Xu L; Shi W; Zhang G; Yan H Biosens Bioelectron; 2017 May; 91():817-823. PubMed ID: 28152488 [TBL] [Abstract][Full Text] [Related]
17. Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved sensitivity. Yu Z; Han X; Li F; Tan X; Shi W; Fu C; Yan H; Zhang G Anal Bioanal Chem; 2020 Apr; 412(11):2391-2397. PubMed ID: 32076786 [TBL] [Abstract][Full Text] [Related]
18. Application of electrochemical surface plasmon resonance spectroscopy for characterization of electrochemical DNA sensors. Salamifar SE; Lai RY Colloids Surf B Biointerfaces; 2014 Oct; 122():835-839. PubMed ID: 25096722 [TBL] [Abstract][Full Text] [Related]
19. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor. Lubin AA; Hunt BV; White RJ; Plaxco KW Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066 [TBL] [Abstract][Full Text] [Related]
20. A label-free electrochemical DNA sensor based on exonuclease III-aided target recycling strategy for sequence-specific detection of femtomolar DNA. Wu D; Yin BC; Ye BC Biosens Bioelectron; 2011 Oct; 28(1):232-8. PubMed ID: 21820885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]