These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 23414117)
41. Efficacy of an alphabaculovirus-based biological insecticide for control of Chrysodeixis chalcites (Lepidoptera: Noctuidae) on tomato and banana crops. Simón O; Bernal A; Williams T; Carnero A; Hernández-Suárez E; Muñoz D; Caballero P Pest Manag Sci; 2015 Dec; 71(12):1623-30. PubMed ID: 25534715 [TBL] [Abstract][Full Text] [Related]
42. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). Kwon B; Kim Y J Econ Entomol; 2008 Feb; 101(1):36-41. PubMed ID: 18330113 [TBL] [Abstract][Full Text] [Related]
43. Exploring the efficacy of pyrethroid incorporated nets for the control of stored product moth species: immediate and delayed effects on Ephestia kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae). Altunç YE; Sakka MK; Gourgouta M; Morrison WR; Güncan A; Athanassiou CG J Econ Entomol; 2024 Oct; 117(5):2159-2167. PubMed ID: 39046850 [TBL] [Abstract][Full Text] [Related]
44. Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests Spodoptera spp. and Plutella xylostella. Park MG; Choi JY; Kim JH; Park DH; Wang M; Kim HJ; Kim SH; Lee HY; Je YH Pest Manag Sci; 2022 Jul; 78(7):2976-2984. PubMed ID: 35419912 [TBL] [Abstract][Full Text] [Related]
45. Antimicrobial peptide cecropin B functions in pathogen resistance of Wang YX; Yang HJ; Zhang WJ; Zhao XH; Cui MY; Zhang JB; Zhang XX; Fan D Bull Entomol Res; 2024 Apr; 114(2):281-292. PubMed ID: 38602247 [No Abstract] [Full Text] [Related]
46. Biological activities of Solanum pseudocapsicum (Solanaceae) against cotton bollworm, Helicoverpa armigera Hübner and armyworm, Spodoptera litura Fabricius (Lepidotera: Noctuidae). Jeyasankar A; Premalatha S; Elumalai K Asian Pac J Trop Biomed; 2012 Dec; 2(12):981-6. PubMed ID: 23593579 [TBL] [Abstract][Full Text] [Related]
47. Relative activity of 15 bacterial strains against the larvae of Helicoverpa armigera, Spodoptera exigua, and Spodoptera litura (Lepidoptera: Noctuidae). Cao SK; Du XX; Chen G; Zeng AP; Yu H J Econ Entomol; 2023 Oct; 116(5):1505-1517. PubMed ID: 37499044 [TBL] [Abstract][Full Text] [Related]
48. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. Grizanova EV; Dubovskiy IM; Whitten MM; Glupov VV J Invertebr Pathol; 2014 Jun; 119():40-6. PubMed ID: 24735783 [TBL] [Abstract][Full Text] [Related]
49. Effect of Bt cotton expressing Cry1Ac and Cry2Ab, non-Bt cotton and starvation on survival and development of Trichoplusia ni (Lepidoptera: Noctuidae). Li YX; Greenberg SM; Liu TX Pest Manag Sci; 2007 May; 63(5):476-82. PubMed ID: 17421053 [TBL] [Abstract][Full Text] [Related]
50. Assessment of combining biosynthesized silver nanoparticles using Gabarty A; Abas A; Salem HM; El-Sonbaty SM; Farghaly DS; Awad HA Int J Radiat Biol; 2021; 97(9):1299-1315. PubMed ID: 34032553 [TBL] [Abstract][Full Text] [Related]
51. Life history attributes of Indian meal moth (Lepidoptera: Pyralidae) and Angoumois grain moth (Lepidoptera: Gelechiidae) reared on transgenic corn kernels. Sedlacek JD; Komaravalli SR; Hanley AM; Price BD; Davis PM J Econ Entomol; 2001 Apr; 94(2):586-92. PubMed ID: 11332858 [TBL] [Abstract][Full Text] [Related]
52. Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Lai T; Su J Pest Manag Sci; 2011 Nov; 67(11):1468-72. PubMed ID: 21594963 [TBL] [Abstract][Full Text] [Related]
53. Developmental regulation and antifungal activity of a growth-blocking peptide from the beet armyworm Spodoptera exigua. Wan H; Lee KS; Kim BY; Yuan M; Zhan S; Lu Y; You H; Li J; Jin BR Dev Comp Immunol; 2013 Oct; 41(2):240-7. PubMed ID: 23732405 [TBL] [Abstract][Full Text] [Related]
54. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Thamthiankul S; Moar WJ; Miller ME; Panbangred W Appl Microbiol Biotechnol; 2004 Aug; 65(2):183-92. PubMed ID: 15107949 [TBL] [Abstract][Full Text] [Related]
55. Bacillus thuringiensis-based bioinsecticides affect predation of Euborellia annulipes on diamondback moth larvae. da Silva Nunes G; de Souza JM; Ramalho DG; De Bortoli SA; Polanczyk RA Environ Sci Pollut Res Int; 2023 Aug; 30(39):90730-90740. PubMed ID: 37462876 [TBL] [Abstract][Full Text] [Related]
56. Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Bang K; Park S; Yoo JY; Cho S Mol Biol Rep; 2012 May; 39(5):5151-9. PubMed ID: 22160467 [TBL] [Abstract][Full Text] [Related]
57. RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. Hwang J; Kim Y J Invertebr Pathol; 2011 Nov; 108(3):194-200. PubMed ID: 21925182 [TBL] [Abstract][Full Text] [Related]
58. Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. Li H; Bouwer G J Invertebr Pathol; 2012 Jan; 109(1):110-6. PubMed ID: 22019386 [TBL] [Abstract][Full Text] [Related]
59. Response of Heliothis virescens (Lepidoptera: Noctuidae) strains to Bacillus thuringiensis Cry1Ac incorporated into different insect artificial diets. Blanco CA; Gould F; Vega-Aquino P; Jurat-Fuentes JL; Perera OP; Abel CA J Econ Entomol; 2009 Aug; 102(4):1599-606. PubMed ID: 19736774 [TBL] [Abstract][Full Text] [Related]
60. Effects of two varieties of Bacillus thuringiensis maize on the biology of Plodia interpunctella. Gryspeirt A; Grégoire JC Toxins (Basel); 2012 May; 4(5):373-89. PubMed ID: 22778907 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]