BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23414297)

  • 1. Guided-ion-beam scattering and direct dynamics trajectory study on the reaction of deprotonated cysteine with singlet molecular oxygen.
    Fang Y; Liu F; Emre R; Liu J
    J Phys Chem B; 2013 Mar; 117(10):2878-87. PubMed ID: 23414297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of deprotonated tyrosine and tryptophan with electronically excited singlet molecular oxygen (a1Δ(g)): a guided-ion-beam scattering, statistical modeling, and trajectory study.
    Liu F; Fang Y; Chen Y; Liu J
    J Phys Chem B; 2012 Jun; 116(22):6369-79. PubMed ID: 22582858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of gas-phase hydrated protonated/deprotonated cysteine: how many water ligands are sufficient to approach solution-phase photooxidation chemistry?
    Liu F; Emre R; Lu W; Liu J
    Phys Chem Chem Phys; 2013 Dec; 15(47):20496-509. PubMed ID: 24172687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociative excitation energy transfer in the reactions of protonated cysteine and tryptophan with electronically excited singlet molecular oxygen (a1Δ(g)).
    Liu F; Fang Y; Chen Y; Liu J
    J Phys Chem B; 2011 Aug; 115(32):9898-909. PubMed ID: 21761907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and trajectory study on the reaction of protonated methionine with electronically excited singlet molecular oxygen (a1Δg): reaction dynamics and collision energy effects.
    Fang Y; Liu F; Bennett A; Ara S; Liu J
    J Phys Chem B; 2011 Mar; 115(11):2671-82. PubMed ID: 21355611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of protonated tyrosine with electronically excited singlet molecular oxygen (a1Delta(g)): an experimental and trajectory study.
    Fang Y; Liu J
    J Phys Chem A; 2009 Oct; 113(42):11250-61. PubMed ID: 19780521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collision dynamics of protonated N-acetylmethionine with singlet molecular oxygen (a(1)Δg): the influence of the amide bond and ruling out the complex-mediated mechanism at low energies.
    Lu W; Liu F; Emre R; Liu J
    J Phys Chem B; 2014 Apr; 118(14):3844-52. PubMed ID: 24646013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation Dynamics of Methionine with Singlet Oxygen: Effects of Methionine Ionization and Microsolvation.
    Liu F; Liu J
    J Phys Chem B; 2015 Jun; 119(25):8001-12. PubMed ID: 26000762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating Potential Energy Surfaces for Singlet O
    Lu W; Tsai IM; Sun Y; Zhou W; Liu J
    J Phys Chem B; 2017 Aug; 121(33):7844-7854. PubMed ID: 28724285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O(3P) + CO2 collisions at hyperthermal energies: dynamics of nonreactive scattering, oxygen isotope exchange, and oxygen-atom abstraction.
    Yeung LY; Okumura M; Zhang J; Minton TK; Paci JT; Karton A; Martin JM; Camden JP; Schatz GC
    J Phys Chem A; 2012 Jan; 116(1):64-84. PubMed ID: 22185296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of collisional and vibrational velocity on proton and deuteron transfer in the reaction of HOD+ with CO.
    Bell DM; Anderson SL
    J Phys Chem A; 2013 Feb; 117(6):1083-93. PubMed ID: 22788802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrationally enhanced charge transfer and mode/bond-specific H+ and D+ transfer in the reaction of HOD+ with N2O.
    Bell DM; Anderson SL
    J Chem Phys; 2013 Sep; 139(11):114305. PubMed ID: 24070288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of cysteine thiolate and -S...H-O intermolecular hydrogen bond.
    Woo HK; Lau KC; Wang XB; Wang LS
    J Phys Chem A; 2006 Nov; 110(46):12603-6. PubMed ID: 17107110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of formaldehyde cation with molecular hydrogen: effects of collision energy and H2CO+ vibrations.
    Liu J; Anderson SL
    J Chem Phys; 2004 May; 120(18):8528-36. PubMed ID: 15267779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct dynamics simulations of the product channels and atomistic mechanisms for the OH(-) + CH3I reaction. Comparison with experiment.
    Xie J; Sun R; Siebert MR; Otto R; Wester R; Hase WL
    J Phys Chem A; 2013 Aug; 117(32):7162-78. PubMed ID: 23514259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of the Singlet O
    Sun Y; Lu W; Liu J
    J Phys Chem B; 2017 Feb; 121(5):956-966. PubMed ID: 28060508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational mode and collision energy effects on reaction of H2CO+ with C2D4.
    Liu J; Van Devener B; Anderson SL
    J Chem Phys; 2004 Dec; 121(23):11746-59. PubMed ID: 15634139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How protonation and deprotonation of 9-methylguanine alter its singlet O2 addition path: about the initial stage of guanine nucleoside oxidation.
    Lu W; Teng H; Liu J
    Phys Chem Chem Phys; 2016 Jun; 18(22):15223-34. PubMed ID: 27211529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics study of the OH + NH3 hydrogen abstraction reaction using QCT calculations based on an analytical potential energy surface.
    Monge-Palacios M; Corchado JC; Espinosa-Garcia J
    J Chem Phys; 2013 Jun; 138(21):214306. PubMed ID: 23758370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Reactivity of O
    Eyet N; Wang ZC; Bierbaum VM
    J Phys Chem A; 2019 Apr; 123(13):2586-2591. PubMed ID: 30848902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.