BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23414431)

  • 1. Application of the compensated Arrhenius formalism to fluidity data of polar organic liquids.
    Petrowsky M; Fleshman AM; Frech R
    J Phys Chem B; 2013 Mar; 117(10):2971-8. PubMed ID: 23414431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.
    Petrowsky M; Fleshman A; Ismail M; Glatzhofer DT; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(33):10098-105. PubMed ID: 22838847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular model of self diffusion in polar organic liquids: implications for conductivity and fluidity in polar organic liquids and electrolytes.
    Frech R; Petrowsky M
    J Phys Chem B; 2014 Mar; 118(9):2422-32. PubMed ID: 24559237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass and charge transport in 1-alkyl-3-methylimidazolium triflate ionic liquids.
    Petrowsky M; Burba CM; Frech R
    J Chem Phys; 2013 Nov; 139(20):204502. PubMed ID: 24289359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2010 Jul; 114(26):8600-5. PubMed ID: 20552999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the compensated arrhenius formalism to dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2009 Dec; 113(50):16118-23. PubMed ID: 19924841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of ion transport in dilute tetrabutylammonium triflate-acetate solutions and self-diffusion in pure acetate liquids.
    Bopege DN; Petrowsky M; Fleshman AM; Frech R; Johnson MB
    J Phys Chem B; 2012 Jan; 116(1):71-6. PubMed ID: 22145961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.
    Fleshman AM; Forsythe GE; Petrowsky M; Frech R
    J Phys Chem B; 2016 Sep; 120(37):9959-68. PubMed ID: 27580069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.
    Petrowsky M; Glatzhofer DT; Frech R
    J Phys Chem B; 2013 Nov; 117(46):14432-7. PubMed ID: 24156502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration dependence of molal conductivity and dielectric constant of 1-alcohol electrolytes using the compensated arrhenius formalism.
    Fleshman AM; Petrowsky M; Frech R
    J Phys Chem B; 2013 May; 117(17):5330-7. PubMed ID: 23527562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of ion transport: the compensated Arrhenius equation.
    Petrowsky M; Frech R
    J Phys Chem B; 2009 Apr; 113(17):5996-6000. PubMed ID: 19338318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion transport with charge-protected and non-charge-protected cations in alcohol-based electrolytes using the compensated Arrhenius formalism. Part I: ionic conductivity and the static dielectric constant.
    Petrowsky M; Fleshman A; Frech R
    J Phys Chem B; 2012 May; 116(19):5760-5. PubMed ID: 22559992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensated Arrhenius formalism applied to a conductivity study in poly(propylene glycol) diacrylate monomers.
    Dubois F; Derouiche Y; Leblond JM; Maschke U; Douali R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032601. PubMed ID: 26465489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stokes shift dynamics in ionic liquids: temperature dependence.
    Kashyap HK; Biswas R
    J Phys Chem B; 2010 Dec; 114(50):16811-23. PubMed ID: 21126013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.
    Petrowsky M; Fleshman A; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(31):9303-9. PubMed ID: 22845017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density scaling of the transport properties of molecular and ionic liquids.
    López ER; Pensado AS; Comuñas MJ; Pádua AA; Fernández J; Harris KR
    J Chem Phys; 2011 Apr; 134(14):144507. PubMed ID: 21495764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass and charge transport in cyclic carbonates: implications for improved lithium ion battery electrolytes.
    Petrowsky M; Ismail M; Glatzhofer DT; Frech R
    J Phys Chem B; 2013 May; 117(19):5963-70. PubMed ID: 23597103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass and Ion Transport in Ketones and Ketone Electrolytes: Comparison with Acetate Systems.
    Bopege DN; Petrowsky M; Johnson MB; Frech R
    J Solution Chem; 2013 Mar; 42(3):584-591. PubMed ID: 23543864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On intermolecular dipolar coupling in two strongly polar liquids: dimethyl sulfoxide and acetonitrile.
    Jadzyn J; Swiergiel J
    J Phys Chem B; 2011 May; 115(20):6623-8. PubMed ID: 21528869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the density scaling of pVT data and transport properties for molecular and ionic liquids.
    López ER; Pensado AS; Fernández J; Harris KR
    J Chem Phys; 2012 Jun; 136(21):214502. PubMed ID: 22697553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.