BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 23414564)

  • 1. Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker.
    Ouldridge TE; Hoare RL; Louis AA; Doye JP; Bath J; Turberfield AJ
    ACS Nano; 2013 Mar; 7(3):2479-90. PubMed ID: 23414564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-graining DNA for simulations of DNA nanotechnology.
    Doye JP; Ouldridge TE; Louis AA; Romano F; Šulc P; Matek C; Snodin BE; Rovigatti L; Schreck JS; Harrison RM; Smith WP
    Phys Chem Chem Phys; 2013 Dec; 15(47):20395-414. PubMed ID: 24121860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations.
    Shi Z; Castro CE; Arya G
    ACS Nano; 2017 May; 11(5):4617-4630. PubMed ID: 28423273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
    Wei X; Nangreave J; Liu Y
    Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nucleotide-level coarse-grained model of RNA.
    Šulc P; Romano F; Ouldridge TE; Doye JP; Louis AA
    J Chem Phys; 2014 Jun; 140(23):235102. PubMed ID: 24952569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA nanotweezers studied with a coarse-grained model of DNA.
    Ouldridge TE; Louis AA; Doye JP
    Phys Rev Lett; 2010 Apr; 104(17):178101. PubMed ID: 20482144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model.
    Sharma R; Schreck JS; Romano F; Louis AA; Doye JPK
    ACS Nano; 2017 Dec; 11(12):12426-12435. PubMed ID: 29083876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model.
    Ouldridge TE; Louis AA; Doye JP
    J Chem Phys; 2011 Feb; 134(8):085101. PubMed ID: 21361556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of DNA motors: fuel optimization through single-molecule fluorescence.
    Tomov TE; Tsukanov R; Liber M; Masoud R; Plavner N; Nir E
    J Am Chem Soc; 2013 Aug; 135(32):11935-41. PubMed ID: 23879228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioinspired design principle for DNA nanomotors: mechanics-mediated symmetry breaking and experimental demonstration.
    Cheng J; Sreelatha S; Loh IY; Liu M; Wang Z
    Methods; 2014 May; 67(2):227-33. PubMed ID: 24602841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained simulation study of sequence effects on DNA hybridization in a concentrated environment.
    Markegard CB; Fu IW; Reddy KA; Nguyen HD
    J Phys Chem B; 2015 Feb; 119(5):1823-34. PubMed ID: 25581253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleic acid based molecular devices.
    Krishnan Y; Simmel FC
    Angew Chem Int Ed Engl; 2011 Mar; 50(14):3124-56. PubMed ID: 21432950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the thermal behavior of DNA origami nanostructures.
    Wei X; Nangreave J; Jiang S; Yan H; Liu Y
    J Am Chem Soc; 2013 Apr; 135(16):6165-76. PubMed ID: 23537246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unidirectional DNA walker that moves autonomously along a track.
    Yin P; Yan H; Daniell XG; Turberfield AJ; Reif JH
    Angew Chem Int Ed Engl; 2004 Sep; 43(37):4906-11. PubMed ID: 15372637
    [No Abstract]   [Full Text] [Related]  

  • 15. DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size.
    Khara DC; Schreck JS; Tomov TE; Berger Y; Ouldridge TE; Doye JPK; Nir E
    Nucleic Acids Res; 2018 Feb; 46(3):1553-1561. PubMed ID: 29294083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA nanomachines and their functional evolution.
    Liu H; Liu D
    Chem Commun (Camb); 2009 May; (19):2625-36. PubMed ID: 19532904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Proximity-Based Programmable DNA Nanoscale Assembly Line.
    Zhang X; Ding X; Zou J; Gu H
    Methods Mol Biol; 2017; 1500():257-268. PubMed ID: 27813014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid folding of DNA into nanoscale shapes at constant temperature.
    Sobczak JP; Martin TG; Gerling T; Dietz H
    Science; 2012 Dec; 338(6113):1458-61. PubMed ID: 23239734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface.
    Tomov TE; Tsukanov R; Glick Y; Berger Y; Liber M; Avrahami D; Gerber D; Nir E
    ACS Nano; 2017 Apr; 11(4):4002-4008. PubMed ID: 28402651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization.
    Schreck JS; Ouldridge TE; Romano F; Šulc P; Shaw LP; Louis AA; Doye JP
    Nucleic Acids Res; 2015 Jul; 43(13):6181-90. PubMed ID: 26056172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.