BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23414779)

  • 1. A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories.
    Vadivel A; Surendiran B
    Comput Biol Med; 2013 May; 43(4):259-67. PubMed ID: 23414779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms.
    Boumaraf S; Liu X; Ferkous C; Ma X
    Biomed Res Int; 2020; 2020():7695207. PubMed ID: 32462017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammogram retrieval on similar mass lesions.
    Wei CH; Chen SY; Liu X
    Comput Methods Programs Biomed; 2012 Jun; 106(3):234-48. PubMed ID: 20933295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breast mass contour segmentation algorithm in digital mammograms.
    Berber T; Alpkocak A; Balci P; Dicle O
    Comput Methods Programs Biomed; 2013 May; 110(2):150-9. PubMed ID: 23273502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of tolerant features for characterization of masses in mammograms.
    Rojas-Domínguez A; Nandi AK
    Comput Biol Med; 2009 Aug; 39(8):678-88. PubMed ID: 19524221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.
    Vikhe PS; Thool VR
    J Med Syst; 2016 Apr; 40(4):82. PubMed ID: 26811073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: A comparative analysis.
    Mahersia H; Boulehmi H; Hamrouni K
    Comput Methods Programs Biomed; 2016 Apr; 126():46-62. PubMed ID: 26831269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.
    Kar S; Majumder DD
    Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.
    Keller BM; Nathan DL; Wang Y; Zheng Y; Gee JC; Conant EF; Kontos D
    Med Phys; 2012 Aug; 39(8):4903-17. PubMed ID: 22894417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observer variability and applicability of BI-RADS terminology for breast MR imaging: invasive carcinomas as focal masses.
    Kim SJ; Morris EA; Liberman L; Ballon DJ; La Trenta LR; Hadar O; Abramson A; Dershaw DD
    AJR Am J Roentgenol; 2001 Sep; 177(3):551-7. PubMed ID: 11517046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and evaluation of a case-based reasoning classifier for prediction of breast biopsy outcome with BI-RADS lexicon.
    Bilska-Wolak AO; Floyd CE
    Med Phys; 2002 Sep; 29(9):2090-100. PubMed ID: 12349930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breast masses in mammography classification with local contour features.
    Li H; Meng X; Wang T; Tang Y; Yin Y
    Biomed Eng Online; 2017 Apr; 16(1):44. PubMed ID: 28410616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BI-RADS lesion characteristics predict likelihood of malignancy in breast MRI for masses but not for nonmasslike enhancement.
    Gutierrez RL; DeMartini WB; Eby PR; Kurland BF; Peacock S; Lehman CD
    AJR Am J Roentgenol; 2009 Oct; 193(4):994-1000. PubMed ID: 19770321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRT letter: segmentation and texture-based classification of breast mammogram images.
    Naveed N; Jaffar MA; Choi TS
    Microsc Res Tech; 2011 Nov; 74(11):985-7. PubMed ID: 21898670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-spatial-resolution MR imaging of focal breast masses: interpretation model based on kinetic and morphological parameters.
    Tozaki M; Igarashi T; Matsushima S; Fukuda K
    Radiat Med; 2005 Feb; 23(1):43-50. PubMed ID: 15786751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms.
    Sheshadri HS; Kandaswamy A
    Comput Med Imaging Graph; 2007 Jan; 31(1):46-8. PubMed ID: 17070012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decision support system for breast cancer detection using mammograms.
    Ganesan K; Acharya RU; Chua CK; Min LC; Mathew B; Thomas AK
    Proc Inst Mech Eng H; 2013 Jul; 227(7):721-32. PubMed ID: 23636749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks.
    Baccouche A; Garcia-Zapirain B; Elmaghraby AS
    Sci Rep; 2022 Jul; 12(1):12259. PubMed ID: 35851592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach to the detection of lesions in mammograms using fuzzy image processing.
    Bayram B; Acar U
    J Int Med Res; 2007; 35(6):790-5. PubMed ID: 18034992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization.
    Miranda GH; Felipe JC
    Comput Biol Med; 2015 Sep; 64():334-46. PubMed ID: 25453323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.