These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23415245)

  • 21. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resource recovery from excess sludge by subcritical water combined with magnesium ammonium phosphate process.
    Arakane M; Imai T; Murakami S; Takeuchi M; Ukita M; Sekine M; Higuchi T
    Water Sci Technol; 2006; 54(9):81-6. PubMed ID: 17163045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources.
    Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J
    J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density-Based Separation of Microbial Functional Groups in Activated Sludge.
    Li L; You Y; Pagilla K
    Int J Environ Res Public Health; 2020 Jan; 17(1):. PubMed ID: 31935958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A practical method for quantification of phosphorus- and glycogen-accumulating organism populations in activated sludge systems.
    López-Vázquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC
    Water Environ Res; 2007 Dec; 79(13):2487-98. PubMed ID: 18198694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Living on the edge: Prospects for enhanced biological phosphorus removal at low sludge retention time under different temperature scenarios.
    Chan C; Guisasola A; Baeza JA
    Chemosphere; 2020 Nov; 258():127230. PubMed ID: 32535439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.
    Tu Y; Schuler AJ
    Environ Sci Technol; 2013 Apr; 47(8):3816-24. PubMed ID: 23477409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process.
    Wang DB; Li XM; Yang Q; Zeng GM; Liao DX; Zhang J
    Bioresour Technol; 2008 Sep; 99(13):5466-73. PubMed ID: 18082396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of denitrifying phosphorus removal and microbial community of long-term operation in an anaerobic anoxic oxic-biological contact oxidation system.
    Zhang M; Yang Q; Zhang J; Wang C; Wang S; Peng Y
    J Biosci Bioeng; 2016 Oct; 122(4):456-66. PubMed ID: 27133708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term effect of low concentration Cr(VI) on P removal in granule-based enhanced biological phosphorus removal (EBPR) system.
    Fang J; Su B; Sun P; Lou J; Han J
    Chemosphere; 2015 Feb; 121():76-83. PubMed ID: 25479809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metagenomics reveals the metabolism of polyphosphate-accumulating organisms in biofilm sequencing batch reactor: A new model.
    Ni M; Pan Y; Li D; Huang Y; Chen Z; Li L; Song Z; Zhao Y
    Bioresour Technol; 2022 Sep; 360():127603. PubMed ID: 35835418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of an acetate-degrading sludge without intracellular accumulation of polyphosphate and glycogen.
    Fang HH; Zhang T; Liu Y
    Water Res; 2002 Jul; 36(13):3211-8. PubMed ID: 12188117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater.
    Li Y; Zou J; Zhang L; Sun J
    Bioresour Technol; 2014 Feb; 154():178-84. PubMed ID: 24388958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a phosphate ion-selective microelectrode and its use in studies of the enhanced biological phosphorus removal (EBPR) process.
    Wang JJ; Bishop PL
    Environ Technol; 2005 Apr; 26(4):381-8. PubMed ID: 15906489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel A-B process for enhanced biological nutrient removal in municipal wastewater reclamation.
    Xu G; Wang H; Gu J; Shen N; Qiu Z; Zhou Y; Liu Y
    Chemosphere; 2017 Dec; 189():39-45. PubMed ID: 28926787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced biological phosphorus removal in aerobic granular sludge reactors by granular activated carbon dosing.
    Sarvajith M; Nancharaiah YV
    Sci Total Environ; 2022 Jun; 823():153643. PubMed ID: 35124048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of seed sludge on the selection of a photo-EBPR system.
    Carvalho VCF; Freitas EB; Fradinho JC; Reis MAM; Oehmen A
    N Biotechnol; 2019 Mar; 49():112-119. PubMed ID: 30367994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An evaluation of the performance and optimization of a new wastewater treatment technology: the air suction flow-biofilm reactor.
    Forde P; Kennelly C; Gerrity S; Collins G; Clifford E
    Environ Technol; 2015; 36(9-12):1188-204. PubMed ID: 25413003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anoxic growth of phosphate-accumulating organisms (PAOs) in biological nutrient removal activated sludge systems.
    Hu ZR; Wentzel MC; Ekama GA
    Water Res; 2002 Nov; 36(19):4927-37. PubMed ID: 12448537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors.
    Weissbrodt DG; Schneiter GS; Fürbringer JM; Holliger C
    Water Res; 2013 Dec; 47(19):7006-18. PubMed ID: 24200006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.