BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 23415558)

  • 1. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.
    Etzkorn M; Raschle T; Hagn F; Gelev V; Rice AJ; Walz T; Wagner G
    Structure; 2013 Mar; 21(3):394-401. PubMed ID: 23415558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refolding of bacteriorhodopsin from expressed polypeptide fragments.
    Marti T
    J Biol Chem; 1998 Apr; 273(15):9312-22. PubMed ID: 9535926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.
    Hagn F; Etzkorn M; Raschle T; Wagner G
    J Am Chem Soc; 2013 Feb; 135(5):1919-25. PubMed ID: 23294159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P; Booth PJ
    J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer.
    Curran AR; Templer RH; Booth PJ
    Biochemistry; 1999 Jul; 38(29):9328-36. PubMed ID: 10413507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments.
    Henrich E; Löhr F; Mezhyrova J; Laguerre A; Bernhard F; Dötsch V
    Methods Enzymol; 2019; 614():143-185. PubMed ID: 30611423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression, purification, and structural characterization of the bacteriorhodopsin-aspartyl transcarbamylase fusion protein.
    Turner GJ; Miercke LJ; Mitra AK; Stroud RM; Betlach MC; Winter-Vann A
    Protein Expr Purif; 1999 Nov; 17(2):324-38. PubMed ID: 10545282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance.
    Bazzacco P; Billon-Denis E; Sharma KS; Catoire LJ; Mary S; Le Bon C; Point E; Banères JL; Durand G; Zito F; Pucci B; Popot JL
    Biochemistry; 2012 Feb; 51(7):1416-30. PubMed ID: 22304405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring membrane protein stability under native conditions.
    Chang YC; Bowie JU
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):219-24. PubMed ID: 24367094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin.
    Khorana HG
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1166-71. PubMed ID: 8433978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs.
    Broecker J; Eger BT; Ernst OP
    Structure; 2017 Feb; 25(2):384-392. PubMed ID: 28089451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus.
    Etzkorn M; Zoonens M; Catoire LJ; Popot JL; Hiller S
    J Membr Biol; 2014 Oct; 247(9-10):965-70. PubMed ID: 24668145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers.
    Bayburt TH; Sligar SG
    Protein Sci; 2003 Nov; 12(11):2476-81. PubMed ID: 14573860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer.
    Oluwole AO; Danielczak B; Meister A; Babalola JO; Vargas C; Keller S
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1919-1924. PubMed ID: 28079955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphipols: polymers that keep membrane proteins soluble in aqueous solutions.
    Tribet C; Audebert R; Popot JL
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15047-50. PubMed ID: 8986761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
    Farooq A
    Biochemistry; 1998 Oct; 37(43):15170-6. PubMed ID: 9790681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR.
    Klöpfer K; Hagn F
    Prog Nucl Magn Reson Spectrosc; 2019; 114-115():271-283. PubMed ID: 31779883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, folding and structural investigations of the amino acid transporter OEP16.
    Ni da Q; Zook J; Klewer DA; Nieman RA; Soll J; Fromme P
    Protein Expr Purif; 2011 Dec; 80(2):157-68. PubMed ID: 21878393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of membrane protein hydrophobicity by site-directed mutagenesis: introduction of multiple polar residues in helix D of bacteriorhodopsin.
    Chen GQ; Gouaux E
    Protein Eng; 1997 Sep; 10(9):1061-6. PubMed ID: 9464570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.