BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23416132)

  • 1. Proteomic profiling of thermal acclimation in Drosophila melanogaster.
    Colinet H; Overgaard J; Com E; Sørensen JG
    Insect Biochem Mol Biol; 2013 Apr; 43(4):352-65. PubMed ID: 23416132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold acclimation triggers major transcriptional changes in Drosophila suzukii.
    Enriquez T; Colinet H
    BMC Genomics; 2019 May; 20(1):413. PubMed ID: 31117947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rapid cold hardening response of Drosophila melanogaster: complex regulation across different levels of biological organization.
    Overgaard J; Sørensen JG; Com E; Colinet H
    J Insect Physiol; 2014 Mar; 62():46-53. PubMed ID: 24508557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation.
    Kristensen TN; Kjeldal H; Schou MF; Nielsen JL
    J Exp Biol; 2016 Apr; 219(Pt 7):969-76. PubMed ID: 26823104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster.
    Sørensen JG; Loeschcke V; Kristensen TN
    J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster.
    Overgaard J; Sørensen JG; Petersen SO; Loeschcke V; Holmstrup M
    J Insect Physiol; 2005 Nov; 51(11):1173-82. PubMed ID: 16112133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress.
    Boher F; Trefault N; Piulachs MD; Bellés X; Godoy-Herrera R; Bozinovic F
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug; 162(4):391-6. PubMed ID: 22561660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of cardiac response to thermal acclimation in the eurythermal goby fish Gillichthys mirabilis.
    Jayasundara N; Tomanek L; Dowd WW; Somero GN
    J Exp Biol; 2015 May; 218(Pt 9):1359-72. PubMed ID: 25954043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster).
    Štětina T; Koštál V; Korbelová J
    PLoS One; 2015; 10(6):e0128976. PubMed ID: 26034990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes.
    Ronges D; Walsh JP; Sinclair BJ; Stillman JH
    J Exp Biol; 2012 Jun; 215(Pt 11):1824-36. PubMed ID: 22573761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic profiling of heat acclimation in cerebrospinal fluid of rabbit.
    Wang J; Wang S; Zhang W; Wang T; Li P; Zhao X; Niu C; Liu Y; Wang X; Ma Q
    J Proteomics; 2016 Jul; 144():113-22. PubMed ID: 27208788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic characterization of a temperature-sensitive conditional lethal in Drosophila melanogaster.
    Pedersen KS; Codrea MC; Vermeulen CJ; Loeschcke V; Bendixen E
    Heredity (Edinb); 2010 Feb; 104(2):125-34. PubMed ID: 19812620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome.
    MacMillan HA; Knee JM; Dennis AB; Udaka H; Marshall KE; Merritt TJ; Sinclair BJ
    Sci Rep; 2016 Jun; 6():28999. PubMed ID: 27357258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster.
    Aggarwal DD; Ranga P; Kalra B; Parkash R; Rashkovetsky E; Bantis LE
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):81-90. PubMed ID: 23688505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcriptomic and proteomic responses of Daphnia pulex to changes in temperature and food supply comprise environment-specific and clone-specific elements.
    Becker D; Reydelet Y; Lopez JA; Jackson C; Colbourne JK; Hawat S; Hippler M; Zeis B; Paul RJ
    BMC Genomics; 2018 May; 19(1):376. PubMed ID: 29783951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF; Loeschcke V; Kristensen TN
    PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability.
    Tomanek L
    J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness.
    Bozinovic F; Bastías DA; Boher F; Clavijo-Baquet S; Estay SA; Angilletta MJ
    Physiol Biochem Zool; 2011; 84(6):543-52. PubMed ID: 22030847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.