These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 23416132)

  • 1. Proteomic profiling of thermal acclimation in Drosophila melanogaster.
    Colinet H; Overgaard J; Com E; Sørensen JG
    Insect Biochem Mol Biol; 2013 Apr; 43(4):352-65. PubMed ID: 23416132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold acclimation triggers major transcriptional changes in Drosophila suzukii.
    Enriquez T; Colinet H
    BMC Genomics; 2019 May; 20(1):413. PubMed ID: 31117947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flies on the rise: acclimation effect on mitochondrial oxidation capacity at normal and high temperatures in Drosophila melanogaster.
    Blanchard A; Aminot M; Gould N; Léger A; Pichaud N
    J Exp Biol; 2024 Jun; 227(12):. PubMed ID: 38841909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lack of repeatability creates the illusion of a trade-off between basal and plastic cold tolerance.
    O'Neill E; Davis HE; MacMillan HA
    Proc Biol Sci; 2021 Dec; 288(1964):20212121. PubMed ID: 34875191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of developmental plasticity on heat tolerance may be mediated by changes in cell size in Drosophila melanogaster.
    Verspagen N; Leiva FP; Janssen IM; Verberk WCEP
    Insect Sci; 2020 Dec; 27(6):1244-1256. PubMed ID: 31829515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cold acclimation and dsRNA injections on Gs1l gene splicing in Drosophila montana.
    Hopkins D; Envall T; Poikela N; Pentikäinen OT; Kankare M
    Sci Rep; 2018 May; 8(1):7577. PubMed ID: 29765071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated cellular response of the zebrafish (Danio rerio) heart to temperature change.
    Shaftoe JB; Geddes-McAlister J; Gillis TE
    J Exp Biol; 2024 Aug; ():. PubMed ID: 39091230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal acclimation uncovers a simple genetic basis of adaptation to high temperature in a cosmopolitan pest.
    You S; Lei G; Zhou H; Li J; Chen S; Huang J; Vasseur L; Gurr GM; You M; Chen Y
    iScience; 2024 Mar; 27(3):109242. PubMed ID: 38425842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of urbanization and temperature on thermal tolerance, foraging performance, and competition in cavity-dwelling ants.
    Harris BA; Stevens DR; Mathis KA
    Ecol Evol; 2024 Feb; 14(2):e10923. PubMed ID: 38384820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring cross-protective effects between cold and immune stress in Drosophila melanogaster.
    Wiil J; Sørensen JG; Colinet H
    Parasite; 2023; 30():54. PubMed ID: 38084935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection, Identification, and Transcript Expression Analysis of Antioxidant Enzyme Genes in
    Zhu T; Li W; Xue H; Dong S; Wang J; Shang S; Dewer Y
    Antioxidants (Basel); 2023 Nov; 12(11):. PubMed ID: 38001851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription dynamics of heat shock proteins in response to thermal acclimation in
    Quan Y; Wang Z; Wei H; He K
    Front Physiol; 2022; 13():992293. PubMed ID: 36225308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsian-Tsao (
    Huang Y; Cai P; Su X; Zheng M; Chi W; Lin S; Huang Z; Qin S; Zeng S
    Front Nutr; 2022; 9():819319. PubMed ID: 35614980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondria as a target and central hub of energy division during cold stress in insects.
    Lubawy J; Chowański S; Adamski Z; Słocińska M
    Front Zool; 2022 Jan; 19(1):1. PubMed ID: 34991650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila.
    Klepsatel P; Girish TN; Gáliková M
    Sci Rep; 2020 Dec; 10(1):21681. PubMed ID: 33303846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating GWAS and Transcriptomics to Identify the Molecular Underpinnings of Thermal Stress Responses in
    Lecheta MC; Awde DN; O'Leary TS; Unfried LN; Jacobs NA; Whitlock MH; McCabe E; Powers B; Bora K; Waters JS; Axen HJ; Frietze S; Lockwood BL; Teets NM; Cahan SH
    Front Genet; 2020; 11():658. PubMed ID: 32655626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Transcriptome and Proteome Analysis of Heat Acclimation in Predatory Mite
    Tian CB; Li YY; Huang J; Chu WQ; Wang ZY; Liu H
    Front Physiol; 2020; 11():426. PubMed ID: 32411020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid adaptation of the Irish potato famine pathogen
    Wu EJ; Wang YP; Yahuza L; He MH; Sun DL; Huang YM; Liu YC; Yang LN; Zhu W; Zhan J
    Evol Appl; 2020 Apr; 13(4):768-780. PubMed ID: 32211066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Transcriptome Analysis of the Heat Stress Response in
    Li H; Zhao X; Qiao H; He X; Tan J; Hao D
    Front Physiol; 2019; 10():1568. PubMed ID: 32038275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional analysis of insect extreme freeze tolerance.
    Des Marteaux LE; Hůla P; Koštál V
    Proc Biol Sci; 2019 Oct; 286(1913):20192019. PubMed ID: 31640516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.