BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23416204)

  • 21. Algal organic matter inhibits methylmercury photodegradation in eutrophic lake water: A dynamic study.
    Lei P; Zhu J; Zhang J; He H; Chen M; Zhong H
    Sci Total Environ; 2023 Nov; 899():165661. PubMed ID: 37474073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems.
    Lehnherr I; St Louis VL
    Environ Sci Technol; 2009 Aug; 43(15):5692-8. PubMed ID: 19731664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of photodemethylation on the methylmercury budget of boreal Norwegian lakes.
    Poste AE; Braaten HF; de Wit HA; Sørensen K; Larssen T
    Environ Toxicol Chem; 2015 Jun; 34(6):1213-23. PubMed ID: 25663582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comment on "Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters".
    Hoigné JJ
    Water Res; 2004; 38(14-15):3470-1; discussion 3472. PubMed ID: 15276766
    [No Abstract]   [Full Text] [Related]  

  • 26. Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: roles and sources of hydroxyl and hydroperoxyl/superoxide radicals.
    Wang Y; Xu J; Li J; Wu F
    J Hazard Mater; 2013 Sep; 260():255-62. PubMed ID: 23770489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mercury methylation rates for geochemically relevant Hg(II) species in sediments.
    Jonsson S; Skyllberg U; Nilsson MB; Westlund PO; Shchukarev A; Lundberg E; Björn E
    Environ Sci Technol; 2012 Nov; 46(21):11653-9. PubMed ID: 23017152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of methyl and ethyl mercury into inorganic mercury by oxygen free radical-producing systems: involvement of hydroxyl radical.
    Suda I; Totoki S; Takahashi H
    Arch Toxicol; 1991; 65(2):129-34. PubMed ID: 1647758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactor model development: the removal performance of ferrous-catalysed photo-oxidation process by examining the reaction parameters.
    Chan KH; Chu W
    J Hazard Mater; 2009 Aug; 167(1-3):199-204. PubMed ID: 19185422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of nitrate ions on the efficiency of sonophotochemical phenol degradation.
    Zaviska F; Drogui P; El Hachemi EM; Naffrechoux E
    Ultrason Sonochem; 2014 Jan; 21(1):69-75. PubMed ID: 23993458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of wetting-drying alternation on methylmercury degradation in Guangzhou soil.
    Xie M; Zhang C; Liao X; Huang C
    Environ Pollut; 2020 Apr; 259():113866. PubMed ID: 31891907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts.
    Henneberry YK; Kraus TE; Fleck JA; Krabbenhoft DP; Bachand PM; Horwath WR
    Sci Total Environ; 2011 Jan; 409(3):631-7. PubMed ID: 21075424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of inhibition mechanism of NO3- on photoreduction of Hg(II) in artificial water.
    Zhang Y; Sun R; Ma M; Wang D
    Chemosphere; 2012 Apr; 87(2):171-6. PubMed ID: 22209302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters.
    Page SE; Logan JR; Cory RM; McNeill K
    Environ Sci Process Impacts; 2014 Apr; 16(4):807-22. PubMed ID: 24556650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes.
    Garcia-Segura S; Garrido JA; Rodríguez RM; Cabot PL; Centellas F; Arias C; Brillas E
    Water Res; 2012 May; 46(7):2067-76. PubMed ID: 22348999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems.
    Tsui MT; Finlay JC
    Environ Sci Technol; 2011 Jul; 45(14):5981-7. PubMed ID: 21696154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effects of nitrate ion on monomethylmercury photodegradation in water body].
    Mao W; Sun RG; Wang DY; Ma M; Zhang C
    Huan Jing Ke Xue; 2013 Jun; 34(6):2218-24. PubMed ID: 23947036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH.
    Dao YH; De Laat J
    Water Res; 2011 May; 45(11):3309-17. PubMed ID: 21514949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.