These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 23416410)
1. Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna. Campos B; Rivetti C; Rosenkranz P; Navas JM; Barata C Aquat Toxicol; 2013 Apr; 130-131():174-83. PubMed ID: 23416410 [TBL] [Abstract][Full Text] [Related]
2. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Wiench K; Wohlleben W; Hisgen V; Radke K; Salinas E; Zok S; Landsiedel R Chemosphere; 2009 Sep; 76(10):1356-65. PubMed ID: 19580988 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Das P; Xenopoulos MA; Metcalfe CD Bull Environ Contam Toxicol; 2013 Jul; 91(1):76-82. PubMed ID: 23708262 [TBL] [Abstract][Full Text] [Related]
4. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Heinlaan M; Ivask A; Blinova I; Dubourguier HC; Kahru A Chemosphere; 2008 Apr; 71(7):1308-16. PubMed ID: 18194809 [TBL] [Abstract][Full Text] [Related]
5. Effect of chronic toxicity of the crystalline forms of TiO Liu S; Zeng P; Li X; Thuyet DQ; Fan W Ecotoxicol Environ Saf; 2019 Oct; 181():292-300. PubMed ID: 31201961 [TBL] [Abstract][Full Text] [Related]
6. Do titanium dioxide nanoparticles induce food depletion for filter feeding organisms? A case study with Daphnia magna. Bundschuh M; Vogt R; Seitz F; Rosenfeldt RR; Schulz R Environ Pollut; 2016 Jul; 214():840-846. PubMed ID: 27155102 [TBL] [Abstract][Full Text] [Related]
7. Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. Kim KT; Klaine SJ; Cho J; Kim SH; Kim SD Sci Total Environ; 2010 Apr; 408(10):2268-72. PubMed ID: 20153877 [TBL] [Abstract][Full Text] [Related]
8. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Zhu X; Chang Y; Chen Y Chemosphere; 2010 Jan; 78(3):209-15. PubMed ID: 19963236 [TBL] [Abstract][Full Text] [Related]
9. Influences of TiO Tan C; Wang WX Environ Pollut; 2017 Dec; 231(Pt 1):311-318. PubMed ID: 28810200 [TBL] [Abstract][Full Text] [Related]
10. Comparison of TiO2 nanoparticle and graphene-TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes. Li S; Pan X; Wallis LK; Fan Z; Chen Z; Diamond SA Chemosphere; 2014 Oct; 112():62-9. PubMed ID: 25048889 [TBL] [Abstract][Full Text] [Related]
11. The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Adam N; Schmitt C; Galceran J; Companys E; Vakurov A; Wallace R; Knapen D; Blust R Nanotoxicology; 2014 Nov; 8(7):709-17. PubMed ID: 23837602 [TBL] [Abstract][Full Text] [Related]
12. Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. Li M; Czymmek KJ; Huang CP J Hazard Mater; 2011 Mar; 187(1-3):502-8. PubMed ID: 21315509 [TBL] [Abstract][Full Text] [Related]
13. Transmission Electron Microscopy and Scanning Transmission X-Ray Microscopy Studies on the Bioaccumulation and Tissue Level Absorption of TiO2 Nanoparticles in Daphnia magna. Kwon D; Nho HW; Yoon TH J Nanosci Nanotechnol; 2015 Jun; 15(6):4229-38. PubMed ID: 26369034 [TBL] [Abstract][Full Text] [Related]
14. The use of liposomes to differentiate between the effects of nickel accumulation and altered food quality in Daphnia magna exposed to dietary nickel. Evens R; De Schamphelaere KA; Balcaen L; Wang Y; De Roy K; Resano M; Flórez M; Boon N; Vanhaecke F; Janssen CR Aquat Toxicol; 2012 Mar; 109():80-9. PubMed ID: 22210497 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle toxicity in Daphnia magna reproduction studies: the importance of test design. Seitz F; Bundschuh M; Rosenfeldt RR; Schulz R Aquat Toxicol; 2013 Jan; 126():163-8. PubMed ID: 23202250 [TBL] [Abstract][Full Text] [Related]
16. Does the exposure mode to ENPs influence their toxicity to aquatic species? A case study with TiO2 nanoparticles and Daphnia magna. Salieri B; Pasteris A; Baumann J; Righi S; Köser J; D'Amato R; Mazzesi B; Filser J Environ Sci Pollut Res Int; 2015 Apr; 22(7):5050-8. PubMed ID: 25567056 [TBL] [Abstract][Full Text] [Related]
17. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Aruoja V; Dubourguier HC; Kasemets K; Kahru A Sci Total Environ; 2009 Feb; 407(4):1461-8. PubMed ID: 19038417 [TBL] [Abstract][Full Text] [Related]
18. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Warheit DB; Hoke RA; Finlay C; Donner EM; Reed KL; Sayes CM Toxicol Lett; 2007 Jul; 171(3):99-110. PubMed ID: 17566673 [TBL] [Abstract][Full Text] [Related]
19. Two-generational effects and recovery of arsenic and arsenate on Daphnia magna in the presence of nano-TiO Fan W; Liang D; Wang X; Ren J; Xiao S; Zhou T Ecotoxicol Environ Saf; 2019 May; 172():136-143. PubMed ID: 30708224 [TBL] [Abstract][Full Text] [Related]
20. Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. Clément L; Hurel C; Marmier N Chemosphere; 2013 Jan; 90(3):1083-90. PubMed ID: 23062945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]