These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23416479)

  • 1. Facilitated strontium transport by remobilization of strontium-containing secondary precipitates in Hanford Site subsurface.
    Wang G; Um W
    J Hazard Mater; 2013 Mar; 248-249():364-70. PubMed ID: 23416479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow.
    Rod KA; Um W; Flury M
    Environ Sci Technol; 2010 Nov; 44(21):8089-94. PubMed ID: 20886862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced radionuclide immobilization and flow path modifications by dissolution and secondary precipitates.
    Um W; Serne RJ; Yabusaki SB; Owen AT
    J Environ Qual; 2005; 34(4):1404-14. PubMed ID: 15998863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments.
    Chang HS; Um W; Rod K; Serne RJ; Thompson A; Perdrial N; Steefel CI; Chorover J
    Environ Sci Technol; 2011 Oct; 45(19):8313-20. PubMed ID: 21859142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of Sr2+ and SrEDTA2- in partially-saturated and heterogeneous sediments.
    Pace MN; Mayes MA; Jardine PM; McKay LD; Yin XL; Mehlhorn TL; Liu Q; Gürleyük H
    J Contam Hydrol; 2007 May; 91(3-4):267-87. PubMed ID: 17197052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water.
    Ahmed B; Cao B; Mishra B; Boyanov MI; Kemner KM; Fredrickson JK; Beyenal H
    Water Res; 2012 Sep; 46(13):3989-98. PubMed ID: 22683408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate-cancrinite precipitation on quartz sand in simulated Hanford tank solutions.
    Bickmore BR; Nagy KL; Young JS; Drexler JW
    Environ Sci Technol; 2001 Nov; 35(22):4481-6. PubMed ID: 11757605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption and retardation of strontium in saturated Chinese loess: experimental results and model analysis.
    Huo L; Qian T; Hao J; Zhao D
    J Environ Radioact; 2013 Feb; 116():19-27. PubMed ID: 23085342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.
    Achal V; Pan X; Zhang D
    Chemosphere; 2012 Oct; 89(6):764-8. PubMed ID: 22850277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contaminant desorption during long-term leaching of hydroxide-weathered Hanford sediments.
    Thompson A; Steefel CI; Perdrial N; Chorover I
    Environ Sci Technol; 2010 Mar; 44(6):1992-7. PubMed ID: 20170202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloid formation in Hanford sediments reacted with simulated tank waste.
    Mashal K; Harsh JB; Flury M; Felmy AR; Zhao H
    Environ Sci Technol; 2004 Nov; 38(21):5750-6. PubMed ID: 15575296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling.
    Szenknect S; Ardois C; Gaudet JP; Barthès V
    J Contam Hydrol; 2005 Jan; 76(1-2):139-65. PubMed ID: 15588576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of sediments by hyperalkaline K-rich cement leachate: implications for strontium adsorption and incorporation.
    Wallace SH; Shaw S; Morris K; Small JS; Burke IT
    Environ Sci Technol; 2013 Apr; 47(8):3694-700. PubMed ID: 23510060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.
    Crandell LE; Peters CA; Um W; Jones KW; Lindquist WB
    J Contam Hydrol; 2012 Apr; 131(1-4):89-99. PubMed ID: 22360994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water content on strontium retardation factor and distribution coefficient in Chinese loess.
    Huo L; Qian T; Hao J; Liu H; Zhao D
    J Radiol Prot; 2013 Dec; 33(4):791-807. PubMed ID: 24047556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strontium speciation during reaction of kaolinite with simulated tank-waste leachate: bulk and microfocused EXAFS analysis.
    Choi S; O'Day PA; Rivera NA; Mueller KT; Vairavamurthy MA; Seraphin S; Chorover J
    Environ Sci Technol; 2006 Apr; 40(8):2608-14. PubMed ID: 16683599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system.
    Lauchnor EG; Schultz LN; Bugni S; Mitchell AC; Cunningham AB; Gerlach R
    Environ Sci Technol; 2013 Feb; 47(3):1557-64. PubMed ID: 23282003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precipitation of nitrate-cancrinite in Hanford Tank Sludge.
    Buck EC; McNamara BK
    Environ Sci Technol; 2004 Aug; 38(16):4432-8. PubMed ID: 15382874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated transport of (90)Sr following a release of high ionic strength solution in vadose zone sediments.
    Hull LC; Schafer AL
    J Contam Hydrol; 2008 Apr; 97(3-4):135-57. PubMed ID: 18378041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.