BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 23416946)

  • 21. Dynamics of DNA supercoiling by transcription in Escherichia coli.
    Cook DN; Ma D; Pon NG; Hearst JE
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10603-7. PubMed ID: 1332053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The functional response of upstream DNA to dynamic supercoiling in vivo.
    Kouzine F; Sanford S; Elisha-Feil Z; Levens D
    Nat Struct Mol Biol; 2008 Feb; 15(2):146-54. PubMed ID: 18193062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional analysis of three topoisomerases that regulate DNA supercoiling levels in Chlamydia.
    Orillard E; Tan M
    Mol Microbiol; 2016 Feb; 99(3):484-96. PubMed ID: 26447825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-mediated loops in supercoiled DNA create large topological domains.
    Yan Y; Ding Y; Leng F; Dunlap D; Finzi L
    Nucleic Acids Res; 2018 May; 46(9):4417-4424. PubMed ID: 29538766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PICH and TOP3A cooperate to induce positive DNA supercoiling.
    Bizard AH; Allemand JF; Hassenkam T; Paramasivam M; Sarlós K; Singh MI; Hickson ID
    Nat Struct Mol Biol; 2019 Apr; 26(4):267-274. PubMed ID: 30936532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topoisomerase function during replication-independent chromatin assembly in yeast.
    Garinther WI; Schultz MC
    Mol Cell Biol; 1997 Jul; 17(7):3520-6. PubMed ID: 9199287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancer-activated plasmid transcription complexes contain constrained supercoiling.
    Bonilla PJ; Freytag SO; Lutter LC
    Nucleic Acids Res; 1991 Jul; 19(14):3965-71. PubMed ID: 1650458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcription-mediated supercoiling regulates genome folding and loop formation.
    Neguembor MV; Martin L; Castells-García Á; Gómez-García PA; Vicario C; Carnevali D; AlHaj Abed J; Granados A; Sebastian-Perez R; Sottile F; Solon J; Wu CT; Lakadamyali M; Cosma MP
    Mol Cell; 2021 Aug; 81(15):3065-3081.e12. PubMed ID: 34297911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Failure to relax negative supercoiling of DNA is a primary cause of mitotic hyper-recombination in topoisomerase-deficient yeast cells.
    Trigueros S; Roca J
    J Biol Chem; 2002 Oct; 277(40):37207-11. PubMed ID: 12151411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA knots occur in intracellular chromatin.
    Valdés A; Segura J; Dyson S; Martínez-García B; Roca J
    Nucleic Acids Res; 2018 Jan; 46(2):650-660. PubMed ID: 29149297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcription-induced supercoiling explains formation of self-interacting chromatin domains in S. pombe.
    Benedetti F; Racko D; Dorier J; Burnier Y; Stasiak A
    Nucleic Acids Res; 2017 Sep; 45(17):9850-9859. PubMed ID: 28973473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA supercoiling and transcription in bacteria: a two-way street.
    Dorman CJ
    BMC Mol Cell Biol; 2019 Jul; 20(1):26. PubMed ID: 31319794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The effect of DNA supercoiling DNA on nucleosome structure].
    Sivolob AV; Khrapunov SN
    Mol Biol (Mosk); 1991; 25(1):144-52. PubMed ID: 1654518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing.
    Herrero-Ruiz A; Martínez-García PM; Terrón-Bautista J; Millán-Zambrano G; Lieberman JA; Jimeno-González S; Cortés-Ledesma F
    Cell Rep; 2021 Apr; 35(2):108977. PubMed ID: 33852840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale effects of transcriptional DNA supercoiling in vivo.
    Krasilnikov AS; Podtelezhnikov A; Vologodskii A; Mirkin SM
    J Mol Biol; 1999 Oct; 292(5):1149-60. PubMed ID: 10512709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters.
    Ferrándiz MJ; Martín-Galiano AJ; Schvartzman JB; de la Campa AG
    Nucleic Acids Res; 2010 Jun; 38(11):3570-81. PubMed ID: 20176571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromosomal domains of supercoiling in Salmonella typhimurium.
    Pavitt GD; Higgins CF
    Mol Microbiol; 1993 Nov; 10(3):685-96. PubMed ID: 7968545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene.
    Ferrándiz MJ; Martín-Galiano AJ; Arnanz C; Camacho-Soguero I; Tirado-Vélez JM; de la Campa AG
    Nucleic Acids Res; 2016 Sep; 44(15):7292-303. PubMed ID: 27378778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Varying levels of positive and negative supercoiling differently affect the efficiency with which topoisomerase II catenates and decatenates DNA.
    Roca J
    J Mol Biol; 2001 Jan; 305(3):441-50. PubMed ID: 11152602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection.
    Karnani N; Taylor CM; Malhotra A; Dutta A
    Mol Biol Cell; 2010 Feb; 21(3):393-404. PubMed ID: 19955211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.