BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23417004)

  • 1. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism.
    Castrillo M; García-Martínez J; Avalos J
    Appl Environ Microbiol; 2013 Apr; 79(8):2777-88. PubMed ID: 23417004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flavoproteins CryD and VvdA cooperate with the white collar protein WcoA in the control of photocarotenogenesis in Fusarium fujikuroi.
    Castrillo M; Avalos J
    PLoS One; 2015; 10(3):e0119785. PubMed ID: 25774802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation.
    Estrada AF; Avalos J
    Fungal Genet Biol; 2008 May; 45(5):705-18. PubMed ID: 18203635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of carotenogenesis and secondary metabolism by nitrogen in wild-type Fusarium fujikuroi and carotenoid-overproducing mutants.
    Rodríguez-Ortiz R; Limón MC; Avalos J
    Appl Environ Microbiol; 2009 Jan; 75(2):405-13. PubMed ID: 19047398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-mediated participation of the VIVID-like protein of Fusarium fujikuroi VvdA in pigmentation and development.
    Castrillo M; Avalos J
    Fungal Genet Biol; 2014 Oct; 71():9-20. PubMed ID: 25154020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical Characterization of the DASH-Type Cryptochrome CryD From Fusarium fujikuroi.
    Castrillo M; Bernhardt A; Ávalos J; Batschauer A; Pokorny R
    Photochem Photobiol; 2015 Nov; 91(6):1356-67. PubMed ID: 26215424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DASH-type cryptochromes - solved and open questions.
    Kiontke S; Göbel T; Brych A; Batschauer A
    Biol Chem; 2020 Nov; 401(12):1487-1493. PubMed ID: 32663167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the carS gene of Fusarium fujikuroi.
    Rodríguez-Ortiz R; Limón MC; Avalos J
    Mol Genet Genomics; 2013 Apr; 288(3-4):157-73. PubMed ID: 23543145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea.
    Cohrs KC; Schumacher J
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris.
    Wang F; Song X; Dong X; Zhang J; Dong C
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4645-4657. PubMed ID: 28409381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi.
    Teichert S; Rutherford JC; Wottawa M; Heitman J; Tudzynski B
    Eukaryot Cell; 2008 Feb; 7(2):187-201. PubMed ID: 18083831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the White Collar Photoreceptor WcoA on the
    Pardo-Medina J; Gutiérrez G; Limón MC; Avalos J
    Front Microbiol; 2020; 11():619474. PubMed ID: 33574802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bikaverin production and applications.
    Limón MC; Rodríguez-Ortiz R; Avalos J
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):21-9. PubMed ID: 20376635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi.
    Rodríguez-Ortiz R; Mehta BJ; Avalos J; Limón MC
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1991-2000. PubMed ID: 19838698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GAC1, a gene encoding a putative GTPase-activating protein, regulates bikaverin biosynthesis in Fusarium verticillioides.
    Choi YE; Brown JA; Williams CB; Canales LL; Shim WB
    Mycologia; 2008; 100(5):701-9. PubMed ID: 18959154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sensing role of the glutamine synthetase in the nitrogen regulation network in Fusarium fujikuroi.
    Wagner D; Wiemann P; Huß K; Brandt U; Fleißner A; Tudzynski B
    PLoS One; 2013; 8(11):e80740. PubMed ID: 24260467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase.
    Navarro E; Niemann N; Kock D; Dadaeva T; Gutiérrez G; Engelsdorf T; Kiontke S; Corrochano LM; Batschauer A; Garre V
    Curr Biol; 2020 Nov; 30(22):4483-4490.e4. PubMed ID: 32946746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three Genes Involved in Different Signaling Pathways,
    Díaz-Sánchez V; Castrillo M; García-Martínez J; Avalos J; Limón MC
    J Fungi (Basel); 2024 Mar; 10(3):. PubMed ID: 38535211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptomic analysis unveils interactions between the regulatory CarS protein and light response in Fusarium.
    Ruger-Herreros M; Parra-Rivero O; Pardo-Medina J; Romero-Campero FJ; Limón MC; Avalos J
    BMC Genomics; 2019 Jan; 20(1):67. PubMed ID: 30665350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi.
    Niehaus EM; Rindermann L; Janevska S; Münsterkötter M; Güldener U; Tudzynski B
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):279-295. PubMed ID: 29080998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.