These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23417520)
1. The influence of third-body particles on wear rate in unicondylar knee arthroplasty: a wear simulator study with bone and cement debris. Schroeder C; Grupp TM; Fritz B; Schilling C; Chevalier Y; Utzschneider S; Jansson V J Mater Sci Mater Med; 2013 May; 24(5):1319-25. PubMed ID: 23417520 [TBL] [Abstract][Full Text] [Related]
2. Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study. Zietz C; Bergschmidt P; Lange R; Mittelmeier W; Bader R Int J Artif Organs; 2013 Jan; 36(1):47-55. PubMed ID: 23335379 [TBL] [Abstract][Full Text] [Related]
3. PMMA third-body wear after unicondylar knee arthroplasty decuples the UHMWPE wear particle generation in vitro. Paulus AC; Franke M; Kraxenberger M; Schröder C; Jansson V; Utzschneider S Biomed Res Int; 2015; 2015():575849. PubMed ID: 25866795 [TBL] [Abstract][Full Text] [Related]
4. Wear analysis of unicondylar mobile bearing and fixed bearing knee systems: a knee simulator study. Kretzer JP; Jakubowitz E; Reinders J; Lietz E; Moradi B; Hofmann K; Sonntag R Acta Biomater; 2011 Feb; 7(2):710-5. PubMed ID: 20883831 [TBL] [Abstract][Full Text] [Related]
5. Profiling the third-body wear damage produced in CoCr surfaces by bone cement, CoCr, and Ti6Al4V debris: a 10-cycle metal-on-metal simulator test. Halim T; Burgett M; Donaldson TK; Savisaar C; Bowsher J; Clarke IC Proc Inst Mech Eng H; 2014 Jul; 228(7):703-13. PubMed ID: 25062741 [TBL] [Abstract][Full Text] [Related]
6. Increase in the tibial slope reduces wear after medial unicompartmental fixed-bearing arthroplasty of the knee. Weber P; Schröder C; Schwiesau J; Utzschneider S; Steinbrück A; Pietschmann MF; Jansson V; Müller PE Biomed Res Int; 2015; 2015():736826. PubMed ID: 25654123 [TBL] [Abstract][Full Text] [Related]
7. Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefits and potential concerns. Fisher J; McEwen HM; Tipper JL; Galvin AL; Ingram J; Kamali A; Stone MH; Ingham E Clin Orthop Relat Res; 2004 Nov; (428):114-9. PubMed ID: 15534530 [TBL] [Abstract][Full Text] [Related]
8. Measures for reducing ultra-high-molecular-weight polyethylene wear in total knee replacement: a simulator study. Mueller-Rath R; Kleffner B; Andereya S; Mumme T; Wirtz DC Biomed Tech (Berl); 2007 Aug; 52(4):295-300. PubMed ID: 17691863 [TBL] [Abstract][Full Text] [Related]
9. Increase of tibial slope reduces backside wear in medial mobile bearing unicompartmental knee arthroplasty. Weber P; Schröder C; Schmidutz F; Kraxenberger M; Utzschneider S; Jansson V; Müller PE Clin Biomech (Bristol); 2013 Oct; 28(8):904-9. PubMed ID: 24071058 [TBL] [Abstract][Full Text] [Related]
10. Varus or valgus positioning of the tibial component of a unicompartmental fixed-bearing knee arthroplasty does not increase wear. Woiczinski M; Schröder C; Paulus A; Kistler M; Jansson V; Müller PE; Weber P Knee Surg Sports Traumatol Arthrosc; 2020 Sep; 28(9):3016-3021. PubMed ID: 31690992 [TBL] [Abstract][Full Text] [Related]
11. Fixed and mobile bearing total knee arthroplasty--influence on wear generation, corresponding wear areas, knee kinematics and particle composition. Grupp TM; Kaddick C; Schwiesau J; Maas A; Stulberg SD Clin Biomech (Bristol); 2009 Feb; 24(2):210-7. PubMed ID: 19118930 [TBL] [Abstract][Full Text] [Related]
12. Comparison of in vivo polyethylene wear particles between mobile- and fixed-bearing TKA in the same patients. Minoda Y; Hata K; Ikebuchi M; Mizokawa S; Ohta Y; Nakamura H Knee Surg Sports Traumatol Arthrosc; 2017 Sep; 25(9):2887-2893. PubMed ID: 26846659 [TBL] [Abstract][Full Text] [Related]
13. Rotating platform versus fixed-bearing total knees: an in vitro study of wear. Haider H; Garvin K Clin Orthop Relat Res; 2008 Nov; 466(11):2677-85. PubMed ID: 18758877 [TBL] [Abstract][Full Text] [Related]
14. Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris. Davidson JA; Poggie RA; Mishra AK Biomed Mater Eng; 1994; 4(3):213-29. PubMed ID: 7950870 [TBL] [Abstract][Full Text] [Related]
15. Peri-Implant Distribution of Polyethylene Debris in Postmortem-Retrieved Knee Arthroplasties: Can Polyethylene Debris Explain Loss of Cement-Bone Interlock in Successful Total Knee Arthroplasties? Cyndari KI; Goodheart JR; Miller MA; Oest ME; Damron TA; Mann KA J Arthroplasty; 2017 Jul; 32(7):2289-2300. PubMed ID: 28285038 [TBL] [Abstract][Full Text] [Related]
16. Cobalt-chromium femoral components developed scratches and released metal debris in simulated wear whereas ceramic femoral components did not. Roy ME; Whiteside LA; Ly KK; Gauvain MJ Bone Joint J; 2021 Jun; 103-B(6 Supple A):94-101. PubMed ID: 34053284 [TBL] [Abstract][Full Text] [Related]
17. The wear of fixed and mobile bearing unicompartmental knee replacements. Brockett CL; Jennings LM; Fisher J Proc Inst Mech Eng H; 2011 May; 225(5):511-9. PubMed ID: 21755780 [TBL] [Abstract][Full Text] [Related]
18. Vitamin E-infused highly cross-linked polyethylene did not reduce the number of in vivo wear particles in total knee arthroplasty. Orita K; Minoda Y; Sugama R; Ohta Y; Ueyama H; Takemura S; Nakamura H Bone Joint J; 2020 Nov; 102-B(11):1527-1534. PubMed ID: 33135435 [TBL] [Abstract][Full Text] [Related]
19. The effect of bone cement particles on the friction of polyethylene and polyurethane knee bearings. Ash HE; Scholes SC; Unsworth A; Jones E Phys Med Biol; 2004 Aug; 49(15):3413-25. PubMed ID: 15379022 [TBL] [Abstract][Full Text] [Related]
20. Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing. Abdel-Jaber S; Belvedere C; Leardini A; Affatato S J Biomech; 2015 Nov; 48(14):3830-6. PubMed ID: 26431754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]