These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 23417642)
1. Subventricular zone-derived neural stem cell grafts protect against hippocampal degeneration and restore cognitive function in the mouse following intrahippocampal kainic acid administration. Miltiadous P; Kouroupi G; Stamatakis A; Koutsoudaki PN; Matsas R; Stylianopoulou F Stem Cells Transl Med; 2013 Mar; 2(3):185-98. PubMed ID: 23417642 [TBL] [Abstract][Full Text] [Related]
2. IGF-I ameliorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Miltiadous P; Stamatakis A; Koutsoudaki PN; Tiniakos DG; Stylianopoulou F Exp Neurol; 2011 Oct; 231(2):223-35. PubMed ID: 21756906 [TBL] [Abstract][Full Text] [Related]
3. Medial ganglionic eminence-derived neural stem cell grafts ease spontaneous seizures and restore GDNF expression in a rat model of chronic temporal lobe epilepsy. Waldau B; Hattiangady B; Kuruba R; Shetty AK Stem Cells; 2010 Jul; 28(7):1153-64. PubMed ID: 20506409 [TBL] [Abstract][Full Text] [Related]
4. Region-specific differentiation of embryonic stem cell-derived neural progenitor transplants into the adult mouse hippocampus following seizures. Carpentino JE; Hartman NW; Grabel LB; Naegele JR J Neurosci Res; 2008 Feb; 86(3):512-24. PubMed ID: 17918739 [TBL] [Abstract][Full Text] [Related]
5. Neural Stem Cell or Human Induced Pluripotent Stem Cell-Derived GABA-ergic Progenitor Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy. Upadhya D; Hattiangady B; Shetty GA; Zanirati G; Kodali M; Shetty AK Curr Protoc Stem Cell Biol; 2016 Aug; 38():2D.7.1-2D.7.47. PubMed ID: 27532817 [TBL] [Abstract][Full Text] [Related]
6. Grafted Subventricular Zone Neural Stem Cells Display Robust Engraftment and Similar Differentiation Properties and Form New Neurogenic Niches in the Young and Aged Hippocampus. Shetty AK; Hattiangady B Stem Cells Transl Med; 2016 Sep; 5(9):1204-15. PubMed ID: 27194744 [TBL] [Abstract][Full Text] [Related]
8. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Koutsoudaki PN; Papastefanaki F; Stamatakis A; Kouroupi G; Xingi E; Stylianopoulou F; Matsas R Glia; 2016 May; 64(5):763-79. PubMed ID: 26712314 [TBL] [Abstract][Full Text] [Related]
9. Sustained somatostatin gene expression reverses kindling-induced increases in the number of dividing Type-1 neural stem cells in the hippocampi of behaviorally responsive rats. Leibowitz JA; Natarajan G; Zhou J; Carney PR; Ormerod BK Epilepsy Res; 2019 Feb; 150():78-94. PubMed ID: 30735971 [TBL] [Abstract][Full Text] [Related]
10. Neuroprotective effects of IGF-I following kainic acid-induced hippocampal degeneration in the rat. Miltiadous P; Stamatakis A; Stylianopoulou F Cell Mol Neurobiol; 2010 Apr; 30(3):347-60. PubMed ID: 19777341 [TBL] [Abstract][Full Text] [Related]
11. Adipose-derived stem cell transplantation improves learning and memory via releasing neurotrophins in rat model of temporal lobe epilepsy. Wang L; Zhao Y; Pan X; Zhang Y; Lin L; Wu Y; Huang Y; He H Brain Res; 2021 Jan; 1750():147121. PubMed ID: 32919982 [TBL] [Abstract][Full Text] [Related]
12. NSCs promote hippocampal neurogenesis, metabolic changes and synaptogenesis in APP/PS1 transgenic mice. Zhang W; Gu GJ; Zhang Q; Liu JH; Zhang B; Guo Y; Wang MY; Gong QY; Xu JR Hippocampus; 2017 Dec; 27(12):1250-1263. PubMed ID: 28833933 [TBL] [Abstract][Full Text] [Related]
13. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Duveau V; Madhusudan A; Caleo M; Knuesel I; Fritschy JM Hippocampus; 2011 Sep; 21(9):935-44. PubMed ID: 20865728 [TBL] [Abstract][Full Text] [Related]
14. Septotemporal position in the hippocampal formation determines epileptic and neurogenic activity in temporal lobe epilepsy. Häussler U; Bielefeld L; Froriep UP; Wolfart J; Haas CA Cereb Cortex; 2012 Jan; 22(1):26-36. PubMed ID: 21572089 [TBL] [Abstract][Full Text] [Related]
15. Shenzao jiannao oral liquid, an herbal formula, ameliorates cognitive impairments by rescuing neuronal death and triggering endogenous neurogenesis in AD-like mice induced by a combination of Aβ42 and scopolamine. Xiao H; Li H; Song H; Kong L; Yan X; Li Y; Deng Y; Tai H; Wu Y; Ni Y; Li W; Chen J; Yang J J Ethnopharmacol; 2020 Sep; 259():112957. PubMed ID: 32416248 [TBL] [Abstract][Full Text] [Related]
16. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation. Kar S; Seto D; Doré S; Chabot JG; Quirion R Neuroscience; 1997 Oct; 80(4):1041-55. PubMed ID: 9284059 [TBL] [Abstract][Full Text] [Related]
17. LncRNA-UCA1 inhibits the astrocyte activation in the temporal lobe epilepsy via regulating the JAK/STAT signaling pathway. Wang H; Yao G; Li L; Ma Z; Chen J; Chen W J Cell Biochem; 2020 Oct; 121(10):4261-4270. PubMed ID: 31909503 [TBL] [Abstract][Full Text] [Related]
18. The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: A behavioral and histochemical approach. Naderali E; Nikbakht F; Ofogh SN; Rasoolijazi H J Integr Neurosci; 2018; 17(1):19-25. PubMed ID: 29376880 [TBL] [Abstract][Full Text] [Related]