BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23417644)

  • 21. Isoelectric focusing in serial immobilized pH gradient gels to improve protein separation in proteomic analysis.
    Poznanovic S; Schwall G; Zengerling H; Cahill MA
    Electrophoresis; 2005 Aug; 26(16):3185-90. PubMed ID: 16041705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device.
    Das C; Fan ZH
    Electrophoresis; 2006 Sep; 27(18):3619-26. PubMed ID: 16915565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carrier ampholytes rehabilitated: gel isoelectric focusing on pH gradients visualized in real-time by automated fluorescence scanning in the HPGE-1000 apparatus.
    Gombocz E; Cortez E
    Electrophoresis; 1999 Jun; 20(7):1365-72. PubMed ID: 10424457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fractionation of beta-lactoglobulin tryptic peptides by ampholyte-free isoelectric focusing.
    Groleau PE; Jimenez-Flores R; Gauthier SF; Pouliot Y
    J Agric Food Chem; 2002 Jan; 50(3):578-83. PubMed ID: 11804532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing.
    Chick JM; Haynes PA; Molloy MP; Bjellqvist B; Baker MS; Len AC
    J Proteome Res; 2008 Mar; 7(3):1036-45. PubMed ID: 18211008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free-flow electrophoresis of the human urinary proteome.
    Nissum M; Wildgruber R
    Methods Mol Biol; 2008; 484():131-44. PubMed ID: 18592177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a multilane channel system for nongel-based two-dimensional protein separations using isoelectric focusing and asymmetrical flow field-flow fractionation.
    Kim KH; Moon MH
    Anal Chem; 2009 Feb; 81(4):1715-21. PubMed ID: 19161332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-gel isoelectric focusing of peptides as a tool for improved protein identification.
    Krijgsveld J; Gauci S; Dormeyer W; Heck AJ
    J Proteome Res; 2006 Jul; 5(7):1721-30. PubMed ID: 16823980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel staining-free proteomic method for simultaneous identification of proteins and determination of their pI values by using low-molecular-mass pI markers.
    Chmelík J; Mazanec K; Slais K
    Electrophoresis; 2007 Sep; 28(18):3315-23. PubMed ID: 17854126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of polypeptides by isoelectric point focusing in electrospray-friendly solution using a multiple-junction capillary fractionator.
    Chingin K; Astorga-Wells J; Pirmoradian Najafabadi M; Lavold T; Zubarev RA
    Anal Chem; 2012 Aug; 84(15):6856-62. PubMed ID: 22779778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of microchip material and surface treatment options for IEF of allergenic milk proteins on microchips.
    Poitevin M; Shakalisava Y; Miserere S; Peltre G; Viovy JL; Descroix S
    Electrophoresis; 2009 Dec; 30(24):4256-63. PubMed ID: 20013909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration of dialysis membranes into a poly(dimethylsiloxane) microfluidic chip for isoelectric focusing of proteins using whole-channel imaging detection.
    Ou J; Glawdel T; Samy R; Wang S; Liu Z; Ren CL; Pawliszyn J
    Anal Chem; 2008 Oct; 80(19):7401-7. PubMed ID: 18754670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of protein loading techniques and improved separation in OFFGEL isoelectric focusing.
    Keidel EM; Dosch D; Brunner A; Kellermann J; Lottspeich F
    Electrophoresis; 2011 Jun; 32(13):1659-66. PubMed ID: 21563181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic devices with photodefinable pseudo-valves for protein separation.
    Fan ZH
    Methods Mol Biol; 2009; 544():43-52. PubMed ID: 19488692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conductivity properties of carrier ampholyte pH gradients in isoelectric focusing.
    Stoyanov AV; Das C; Fredrickson CK; Fan ZH
    Electrophoresis; 2005 Jan; 26(2):473-9. PubMed ID: 15657903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel isoelectric focusing II.
    Zilberstein GV; Baskin EM; Bukshpan S; Korol LE
    Electrophoresis; 2004 Nov; 25(21-22):3643-51. PubMed ID: 15565700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separation and quantitation of milk whey proteins of close isoelectric points by on-line capillary isoelectric focusing--electrospray ionization mass spectrometry in glycerol-water media.
    Lecoeur M; Gareil P; Varenne A
    J Chromatogr A; 2010 Nov; 1217(46):7293-301. PubMed ID: 20947089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. G-electrode-loading method for isoelectric focusing, enabling separation of low-abundance and high-molecular-mass proteins.
    Koga K
    Anal Biochem; 2008 Nov; 382(1):23-8. PubMed ID: 18703009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance implications of chemical mobilization after microchannel IEF.
    Tentori AM; Herr AE
    Electrophoresis; 2014 May; 35(10):1453-60. PubMed ID: 24590929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-sensitivity analysis of human plasma proteome by immobilized isoelectric focusing fractionation coupled to mass spectrometry identification.
    Tu CJ; Dai J; Li SJ; Sheng QH; Deng WJ; Xia QC; Zeng R
    J Proteome Res; 2005; 4(4):1265-73. PubMed ID: 16083276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.