These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23417974)

  • 1. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier.
    Gan Q; Bartoli FJ; Kafafi ZH
    Adv Mater; 2013 May; 25(17):2385-96. PubMed ID: 23417974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical and electrical study of organic solar cells with a 2D grating anode.
    Sha WE; Choy WC; Wu Y; Chew WC
    Opt Express; 2012 Jan; 20(3):2572-80. PubMed ID: 22330495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design considerations for plasmonic photovoltaics.
    Ferry VE; Munday JN; Atwater HA
    Adv Mater; 2010 Nov; 22(43):4794-808. PubMed ID: 20814916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic photovoltaic solar cells with cathode modified by ZnO.
    Kim HP; Yusoff AR; Jang J
    J Nanosci Nanotechnol; 2013 Jul; 13(7):5142-7. PubMed ID: 23901543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmonic effects on organic solar cells.
    Uddin A; Yang X
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1099-119. PubMed ID: 24749415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D
    Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.
    Le KQ; Abass A; Maes B; Bienstman P; Alù A
    Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells.
    Lee S; In S; Mason DR; Park N
    Opt Express; 2013 Feb; 21(4):4055-60. PubMed ID: 23481940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution of absorption in plasmonic thin film solar cells.
    Chao CC; Wang CM; Chang JY
    Opt Express; 2010 May; 18(11):11763-71. PubMed ID: 20589037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells.
    Wang Y; Sun T; Paudel T; Zhang Y; Ren Z; Kempa K
    Nano Lett; 2012 Jan; 12(1):440-5. PubMed ID: 22185407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A generalized "cut and projection" algorithm for the generation of quasiperiodic plasmonic concentrators for high efficiency ultra-thin film photovoltaics.
    Flanigan PW; Ostfeld AE; Serrino NG; Ye Z; Pacifici D
    Opt Express; 2013 Feb; 21(3):2757-76. PubMed ID: 23481733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonically enhanced hot electron based photovoltaic device.
    Atar FB; Battal E; Aygun LE; Daglar B; Bayindir M; Okyay AK
    Opt Express; 2013 Mar; 21(6):7196-201. PubMed ID: 23546103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imprinting localized plasmons for enhanced solar cells.
    Dunbar RB; Pfadler T; Lal NN; Baumberg JJ; Schmidt-Mende L
    Nanotechnology; 2012 Sep; 23(38):385202. PubMed ID: 22948008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes.
    Park H; Brown PR; Bulović V; Kong J
    Nano Lett; 2012 Jan; 12(1):133-40. PubMed ID: 22107487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes.
    Kang MG; Xu T; Park HJ; Luo X; Guo LJ
    Adv Mater; 2010 Oct; 22(39):4378-83. PubMed ID: 20734378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive study for the plasmonic thin-film solar cell with periodic structure.
    Sha WE; Choy WC; Chew WC
    Opt Express; 2010 Mar; 18(6):5993-6007. PubMed ID: 20389619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles.
    Brown MD; Suteewong T; Kumar RS; D'Innocenzo V; Petrozza A; Lee MM; Wiesner U; Snaith HJ
    Nano Lett; 2011 Feb; 11(2):438-45. PubMed ID: 21194204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.