These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23418346)

  • 1. Flagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13.
    Wang L; Piao T; Cao M; Qin T; Huang L; Deng H; Mao T; Pan J
    J Cell Sci; 2013 Mar; 126(Pt 6):1531-40. PubMed ID: 23418346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas.
    Piao T; Luo M; Wang L; Guo Y; Li D; Li P; Snell WJ; Pan J
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4713-8. PubMed ID: 19264963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The short flagella 1 (SHF1) gene in
    Perlaza K; Mirvis M; Ishikawa H; Marshall W
    Mol Biol Cell; 2022 Feb; 33(2):ar12. PubMed ID: 34818077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms.
    Piperno G; Fuller MT
    J Cell Biol; 1985 Dec; 101(6):2085-94. PubMed ID: 2415535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis.
    Dawson SC; Sagolla MS; Mancuso JJ; Woessner DJ; House SA; Fritz-Laylin L; Cande WZ
    Eukaryot Cell; 2007 Dec; 6(12):2354-64. PubMed ID: 17766466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarity of flagellar assembly in Chlamydomonas.
    Johnson KA; Rosenbaum JL
    J Cell Biol; 1992 Dec; 119(6):1605-11. PubMed ID: 1281816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule-depolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella.
    Hu Z; Liang Y; Meng D; Wang L; Pan J
    Int Rev Cell Mol Biol; 2015; 317():241-65. PubMed ID: 26008787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of flagellar dynein activity by a central pair kinesin.
    Yokoyama R; O'toole E; Ghosh S; Mitchell DR
    Proc Natl Acad Sci U S A; 2004 Dec; 101(50):17398-403. PubMed ID: 15572440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flagellar microtubule dynamics in Chlamydomonas: cytochalasin D induces periods of microtubule shortening and elongation; and colchicine induces disassembly of the distal, but not proximal, half of the flagellum.
    Dentler WL; Adams C
    J Cell Biol; 1992 Jun; 117(6):1289-98. PubMed ID: 1607390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of eukaryotic cilia and flagella as motile and sensory organelles.
    Mitchell DR
    Adv Exp Med Biol; 2007; 607():130-40. PubMed ID: 17977465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cilia assembly, disassembly, and length by protein phosphorylation.
    Cao M; Li G; Pan J
    Methods Cell Biol; 2009; 94():333-46. PubMed ID: 20362099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flagellar elongation and shortening in Chlamydomonas. III. structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly.
    Dentler WL; Rosenbaum JL
    J Cell Biol; 1977 Sep; 74(3):747-59. PubMed ID: 903371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis and modeling of katanin function in flagellar length control.
    Kannegaard E; Rego EH; Schuck S; Feldman JL; Marshall WF
    Mol Biol Cell; 2014 Nov; 25(22):3686-98. PubMed ID: 25143397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum.
    Blaineau C; Tessier M; Dubessay P; Tasse L; Crobu L; Pagès M; Bastien P
    Curr Biol; 2007 May; 17(9):778-82. PubMed ID: 17433682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella.
    Harris JA; Liu Y; Yang P; Kner P; Lechtreck KF
    Mol Biol Cell; 2016 Jan; 27(2):295-307. PubMed ID: 26631555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis.
    Zhu X; Liang Y; Gao F; Pan J
    Cell Mol Life Sci; 2017 Sep; 74(18):3425-3437. PubMed ID: 28417161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic interaction between polyglutamylated tubulin and the nexin-dynein regulatory complex regulates flagellar motility.
    Kubo T; Oda T
    Mol Biol Cell; 2017 Aug; 28(17):2260-2266. PubMed ID: 28637765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing the role of intraflagellar transport in flagellar length control using length-altering mutants of
    Wemmer K; Ludington W; Marshall WF
    Philos Trans R Soc Lond B Biol Sci; 2020 Feb; 375(1792):20190159. PubMed ID: 31884913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella.
    Meng D; Cao M; Oda T; Pan J
    J Cell Sci; 2014 Jan; 127(Pt 2):281-7. PubMed ID: 24259666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced tubulin polyglutamylation suppresses flagellar shortness in Chlamydomonas.
    Kubo T; Hirono M; Aikawa T; Kamiya R; Witman GB
    Mol Biol Cell; 2015 Aug; 26(15):2810-22. PubMed ID: 26085508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.