BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 23418406)

  • 1. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins.
    Reif MM; Winger M; Oostenbrink C
    J Chem Theory Comput; 2013 Feb; 9(2):1247-1264. PubMed ID: 23418406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Update on phosphate and charged post-translationally modified amino acid parameters in the GROMOS force field.
    Margreitter C; Reif MM; Oostenbrink C
    J Comput Chem; 2017 Apr; 38(10):714-720. PubMed ID: 28120339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refinement of the application of the GROMOS 54A7 force field to β-peptides.
    Lin Z; van Gunsteren WF
    J Comput Chem; 2013 Dec; 34(32):2796-805. PubMed ID: 24122968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the GROMOS 54A7 Force Field with Respect to β-Peptide Folding.
    Huang W; Lin Z; van Gunsteren WF
    J Chem Theory Comput; 2011 May; 7(5):1237-43. PubMed ID: 26610119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid Bilayers: The Effect of Force Field on Ordering and Dynamics.
    Poger D; Mark AE
    J Chem Theory Comput; 2012 Nov; 8(11):4807-17. PubMed ID: 26605633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Head Group Parameterization for GROMOS 54A8: A Consistent Approach with Protein Force Field Description.
    Marzuoli I; Margreitter C; Fraternali F
    J Chem Theory Comput; 2019 Oct; 15(10):5175-5193. PubMed ID: 31433640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Definition and testing of the GROMOS force-field versions 54A7 and 54B7.
    Schmid N; Eichenberger AP; Choutko A; Riniker S; Winger M; Mark AE; van Gunsteren WF
    Eur Biophys J; 2011 Jul; 40(7):843-56. PubMed ID: 21533652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies.
    Kashefolgheta S; Wang S; Acree WE; Hünenberger PH
    Phys Chem Chem Phys; 2021 Jun; 23(23):13055-13074. PubMed ID: 34105547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Using Single Atomistic Long-Range Cutoff Schemes with the GROMOS 54A7 Force Field.
    Silva TFD; Vila-Viçosa D; Reis PBPS; Victor BL; Diem M; Oostenbrink C; Machuqueiro M
    J Chem Theory Comput; 2018 Nov; 14(11):5823-5833. PubMed ID: 30354115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hamiltonian Reweighing To Refine Protein Backbone Dihedral Angle Parameters in the GROMOS Force Field.
    Diem M; Oostenbrink C
    J Chem Inf Model; 2020 Jan; 60(1):279-288. PubMed ID: 31873012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Sodium and Chloride Binding on a Lecithin Bilayer. A Molecular Dynamics Study.
    Reif MM; Kallies C; Knecht V
    Membranes (Basel); 2017 Jan; 7(1):. PubMed ID: 28125062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GROMOS 53A6GLYC, an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates.
    Pol-Fachin L; Rusu VH; Verli H; Lins RD
    J Chem Theory Comput; 2012 Nov; 8(11):4681-90. PubMed ID: 26605624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the GROMOS force-field parameter set 45Alpha3 against nuclear magnetic resonance data of hen egg lysozyme.
    Soares TA; Daura X; Oostenbrink C; Smith LJ; van Gunsteren WF
    J Biomol NMR; 2004 Dec; 30(4):407-22. PubMed ID: 15630561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation and Comparison of Force Fields for Native Cyclodextrins in Aqueous Solution.
    Gebhardt J; Kleist C; Jakobtorweihen S; Hansen N
    J Phys Chem B; 2018 Feb; 122(5):1608-1626. PubMed ID: 29287148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational state-specific free energy differences by one-step perturbation: protein secondary structure preferences of the GROMOS 43A1 and 53A6 force fields.
    Lin Z; Van Gunsteren WF; Liu H
    J Comput Chem; 2011 Jul; 32(10):2290-7. PubMed ID: 21541965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?
    Villa A; Fan H; Wassenaar T; Mark AE
    J Phys Chem B; 2007 May; 111(21):6015-25. PubMed ID: 17489626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients.
    Wolf MG; Groenhof G
    J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.
    Hu Y; Sinha SK; Patel S
    J Phys Chem B; 2014 Oct; 118(41):11973-92. PubMed ID: 25290376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating Bilayers of Nonionic Surfactants with the GROMOS-Compatible 2016H66 Force Field.
    Senac C; Urbach W; Kurtisovski E; Hünenberger PH; Horta BAC; Taulier N; Fuchs PFJ
    Langmuir; 2017 Oct; 33(39):10225-10238. PubMed ID: 28832154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.