These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
545 related articles for article (PubMed ID: 23418623)
1. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. Cesarino I; Araújo P; Sampaio Mayer JL; Vicentini R; Berthet S; Demedts B; Vanholme B; Boerjan W; Mazzafera P J Exp Bot; 2013 Apr; 64(6):1769-81. PubMed ID: 23418623 [TBL] [Abstract][Full Text] [Related]
2. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Berthet S; Demont-Caulet N; Pollet B; Bidzinski P; Cézard L; Le Bris P; Borrega N; Hervé J; Blondet E; Balzergue S; Lapierre C; Jouanin L Plant Cell; 2011 Mar; 23(3):1124-37. PubMed ID: 21447792 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Eudes A; George A; Mukerjee P; Kim JS; Pollet B; Benke PI; Yang F; Mitra P; Sun L; Cetinkol OP; Chabout S; Mouille G; Soubigou-Taconnat L; Balzergue S; Singh S; Holmes BM; Mukhopadhyay A; Keasling JD; Simmons BA; Lapierre C; Ralph J; Loqué D Plant Biotechnol J; 2012 Jun; 10(5):609-20. PubMed ID: 22458713 [TBL] [Abstract][Full Text] [Related]
4. LACCASE5 is required for lignification of the Brachypodium distachyon Culm. Wang Y; Bouchabke-Coussa O; Lebris P; Antelme S; Soulhat C; Gineau E; Dalmais M; Bendahmane A; Morin H; Mouille G; Legée F; Cézard L; Lapierre C; Sibout R Plant Physiol; 2015 May; 168(1):192-204. PubMed ID: 25755252 [TBL] [Abstract][Full Text] [Related]
5. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Zhao Q; Nakashima J; Chen F; Yin Y; Fu C; Yun J; Shao H; Wang X; Wang ZY; Dixon RA Plant Cell; 2013 Oct; 25(10):3976-87. PubMed ID: 24143805 [TBL] [Abstract][Full Text] [Related]
6. The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference. He F; Machemer-Noonan K; Golfier P; Unda F; Dechert J; Zhang W; Hoffmann N; Samuels L; Mansfield SD; Rausch T; Wolf S BMC Plant Biol; 2019 Dec; 19(1):552. PubMed ID: 31830911 [TBL] [Abstract][Full Text] [Related]
7. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Wang CY; Zhang S; Yu Y; Luo YC; Liu Q; Ju C; Zhang YC; Qu LH; Lucas WJ; Wang X; Chen YQ Plant Biotechnol J; 2014 Oct; 12(8):1132-42. PubMed ID: 24975689 [TBL] [Abstract][Full Text] [Related]
8. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units. Fernández-Pérez F; Pomar F; Pedreño MA; Novo-Uzal E Physiol Plant; 2015 Jul; 154(3):395-406. PubMed ID: 25410139 [TBL] [Abstract][Full Text] [Related]
9. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations? Kim SJ; Kim KW; Cho MH; Franceschi VR; Davin LB; Lewis NG Phytochemistry; 2007 Jul; 68(14):1957-74. PubMed ID: 17467016 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of a novel peroxidase gene ZPO-C whose expression and function are closely associated with lignification during tracheary element differentiation. Sato Y; Demura T; Yamawaki K; Inoue Y; Sato S; Sugiyama M; Fukuda H Plant Cell Physiol; 2006 Apr; 47(4):493-503. PubMed ID: 16446311 [TBL] [Abstract][Full Text] [Related]
11. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications. Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892 [TBL] [Abstract][Full Text] [Related]
12. High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification. Rojas-Murcia N; Hématy K; Lee Y; Emonet A; Ursache R; Fujita S; De Bellis D; Geldner N Proc Natl Acad Sci U S A; 2020 Nov; 117(46):29166-29177. PubMed ID: 33139576 [TBL] [Abstract][Full Text] [Related]
13. Latex-less opium poppy: cause for less latex and reduced peduncle strength. Chaturvedi N; Singh SK; Shukla AK; Lal RK; Gupta MM; Dwivedi UN; Shasany AK Physiol Plant; 2014 Mar; 150(3):436-45. PubMed ID: 24033330 [TBL] [Abstract][Full Text] [Related]
14. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Anterola AM; Lewis NG Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514 [TBL] [Abstract][Full Text] [Related]
15. Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Eudes A; Pollet B; Sibout R; Do CT; Séguin A; Lapierre C; Jouanin L Planta; 2006 Dec; 225(1):23-39. PubMed ID: 16832689 [TBL] [Abstract][Full Text] [Related]
16. Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems. Smith RA; Schuetz M; Karlen SD; Bird D; Tokunaga N; Sato Y; Mansfield SD; Ralph J; Samuels AL Plant Physiol; 2017 Jun; 174(2):1028-1036. PubMed ID: 28416705 [TBL] [Abstract][Full Text] [Related]
17. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Jung JH; Fouad WM; Vermerris W; Gallo M; Altpeter F Plant Biotechnol J; 2012 Dec; 10(9):1067-76. PubMed ID: 22924974 [TBL] [Abstract][Full Text] [Related]