These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23418823)

  • 1. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis.
    Zhao Z; Shklyaev OE; Nili A; Mohamed MN; Kubicki JD; Crespi VH; Zhong L
    J Phys Chem A; 2013 Mar; 117(12):2580-9. PubMed ID: 23418823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular origins of twist in cellulose I-beta.
    Bu L; Himmel ME; Crowley MF
    Carbohydr Polym; 2015 Jul; 125():146-52. PubMed ID: 25857969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic twist in Iβ cellulose microfibrils by tight-binding objective boundary calculations.
    Dumitrică T
    Carbohydr Polym; 2020 Feb; 230():115624. PubMed ID: 31887879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Ibeta.
    Nishiyama Y; Johnson GP; French AD; Forsyth VT; Langan P
    Biomacromolecules; 2008 Nov; 9(11):3133-40. PubMed ID: 18855441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.
    Oehme DP; Downton MT; Doblin MS; Wagner J; Gidley MJ; Bacic A
    Plant Physiol; 2015 May; 168(1):3-17. PubMed ID: 25786828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride.
    Gross AS; Bell AT; Chu JW
    J Phys Chem B; 2011 Nov; 115(46):13433-40. PubMed ID: 21950594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Insight into the Self-Assembly Process of Cellulose Iβ Microfibril.
    Thu TTM; Moreira RA; Weber SAL; Poma AB
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degree of polymerization of glucan chains shapes the structure fluctuations and melting thermodynamics of a cellulose microfibril.
    Chang R; Gross AS; Chu JW
    J Phys Chem B; 2012 Jul; 116(28):8074-83. PubMed ID: 22725724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling cellulose microfibrils: a twisted tale.
    Hadden JA; French AD; Woods RJ
    Biopolymers; 2013 Oct; 99(10):746-56. PubMed ID: 23681971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature behavior of cellulose I.
    Matthews JF; Bergenstråhle M; Beckham GT; Himmel ME; Nimlos MR; Brady JW; Crowley MF
    J Phys Chem B; 2011 Mar; 115(10):2155-66. PubMed ID: 21338135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bonds and twist in cellulose microfibrils.
    Kannam SK; Oehme DP; Doblin MS; Gidley MJ; Bacic A; Downton MT
    Carbohydr Polym; 2017 Nov; 175():433-439. PubMed ID: 28917886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation.
    Zhang Q; Brumer H; Ågren H; Tu Y
    Carbohydr Res; 2011 Nov; 346(16):2595-602. PubMed ID: 21974911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose Iβ microfibril interaction with pristine graphene in water: Effects of amphiphilicity by molecular simulation.
    Kong L; Alqus R; Yong CW; Todorov I; Eichhorn SJ; Bryce RA
    J Mol Graph Model; 2023 Jan; 118():108336. PubMed ID: 36182825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of solvated crystal models of cellulose I(alpha) and III(I).
    Yui T; Hayashi S
    Biomacromolecules; 2007 Mar; 8(3):817-24. PubMed ID: 17286383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of chiral interactions in cellulose supra-molecular microfibrils.
    Khandelwal M; Windle A
    Carbohydr Polym; 2014 Jun; 106():128-31. PubMed ID: 24721059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the structural stability of molecular chain sheet models of cellulose crystal allomorphs.
    Uto T; Mawatari S; Yui T
    J Phys Chem B; 2014 Aug; 118(31):9313-21. PubMed ID: 25050643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. REACH coarse-grained simulation of a cellulose fiber.
    Glass DC; Moritsugu K; Cheng X; Smith JC
    Biomacromolecules; 2012 Sep; 13(9):2634-44. PubMed ID: 22937726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems.
    Parthasarathi R; Balamurugan K; Shi J; Subramanian V; Simmons BA; Singh S
    J Phys Chem B; 2015 Nov; 119(45):14339-49. PubMed ID: 26407132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension.
    Kimura F; Kimura T; Tamura M; Hirai A; Ikuno M; Horii F
    Langmuir; 2005 Mar; 21(5):2034-7. PubMed ID: 15723507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.