BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23419072)

  • 1. Laponite nanodisks as an efficient platform for Doxorubicin delivery to cancer cells.
    Wang S; Wu Y; Guo R; Huang Y; Wen S; Shen M; Wang J; Shi X
    Langmuir; 2013 Apr; 29(16):5030-6. PubMed ID: 23419072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced in vivo antitumor efficacy of doxorubicin encapsulated within laponite nanodisks.
    Li K; Wang S; Wen S; Tang Y; Li J; Shi X; Zhao Q
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12328-34. PubMed ID: 25000274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-sensitive Laponite(®)/doxorubicin/alginate nanohybrids with improved anticancer efficacy.
    Gonçalves M; Figueira P; Maciel D; Rodrigues J; Qu X; Liu C; Tomás H; Li Y
    Acta Biomater; 2014 Jan; 10(1):300-7. PubMed ID: 24075886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery.
    Wang G; Maciel D; Wu Y; Rodrigues J; Shi X; Yuan Y; Liu C; Tomás H; Li Y
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16687-95. PubMed ID: 25167168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, Formulation, and Characterization of Doxorubicin-Loaded Laponite/Oligomeric Hyaluronic Acid-Aminophenylboronic Acid Nanohybrids and Cytological Evaluation against MCF-7 Breast Cancer Cells.
    Yang Y; Li J; Chen F; Qiao S; Li Y; Pan W
    AAPS PharmSciTech; 2019 Nov; 21(1):5. PubMed ID: 31749020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional LAPONITE Nanodisks Enable Targeted Anticancer Chemotherapy
    Wu Y; Li K; Kong L; Tang Y; Li G; Jiang W; Shen M; Guo R; Zhao Q; Shi X
    Bioconjug Chem; 2020 Oct; 31(10):2404-2412. PubMed ID: 33001643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antitumor efficacy of doxorubicin-loaded laponite/alginate hybrid hydrogels.
    Gonçalves M; Figueira P; Maciel D; Rodrigues J; Shi X; Tomás H; Li Y
    Macromol Biosci; 2014 Jan; 14(1):110-20. PubMed ID: 23966317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin.
    He L; Liang H; Lin L; Shah BR; Li Y; Chen Y; Li B
    Colloids Surf B Biointerfaces; 2015 Feb; 126():288-96. PubMed ID: 25576811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer.
    Saxena V; Diaz A; Clearfield A; Batteas JD; Hussain MD
    Nanoscale; 2013 Mar; 5(6):2328-36. PubMed ID: 23392208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: mineralization and its effect on tumor targetability in vivo.
    Han HS; Lee J; Kim HR; Chae SY; Kim M; Saravanakumar G; Yoon HY; You DG; Ko H; Kim K; Kwon IC; Park JC; Park JH
    J Control Release; 2013 Jun; 168(2):105-14. PubMed ID: 23474029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery.
    Wu Y; Guo R; Wen S; Shen M; Zhu M; Wang J; Shi X
    J Mater Chem B; 2014 Nov; 2(42):7410-7418. PubMed ID: 32261966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendrimer-Functionalized Laponite Nanodisks as a Platform for Anticancer Drug Delivery.
    Mustafa R; Luo Y; Wu Y; Guo R; Shi X
    Nanomaterials (Basel); 2015 Oct; 5(4):1716-1731. PubMed ID: 28347091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance.
    Fan L; Li F; Zhang H; Wang Y; Cheng C; Li X; Gu CH; Yang Q; Wu H; Zhang S
    Biomaterials; 2010 Jul; 31(21):5634-42. PubMed ID: 20430433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies of polyethylenimine-doxorubicin conjugates with pH-sensitive and pH-insensitive linkers.
    Dong DW; Tong SW; Qi XR
    J Biomed Mater Res A; 2013 May; 101(5):1336-44. PubMed ID: 23065848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells.
    Kuo YC; Liang CT
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):131-7. PubMed ID: 21411296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery.
    Zhang W; Sun J; Liu Y; Tao M; Ai X; Su X; Cai C; Tang Y; Feng Z; Yan X; Chen G; He Z
    Mol Pharm; 2014 Oct; 11(10):3279-90. PubMed ID: 24754897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy.
    Wang C; Cheng L; Liu Z
    Biomaterials; 2011 Feb; 32(4):1110-20. PubMed ID: 20965564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles.
    Azarmi S; Tao X; Chen H; Wang Z; Finlay WH; Löbenberg R; Roa WH
    Int J Pharm; 2006 Aug; 319(1-2):155-61. PubMed ID: 16713150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enriching lipid nanovesicles with short-chain glucosylceramide improves doxorubicin delivery and efficacy in solid tumors.
    van Lummel M; van Blitterswijk WJ; Vink SR; Veldman RJ; van der Valk MA; Schipper D; Dicheva BM; Eggermont AM; ten Hagen TL; Verheij M; Koning GA
    FASEB J; 2011 Jan; 25(1):280-9. PubMed ID: 20876209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, in vitro evaluation, and cellular uptake.
    Dong F; Dong X; Zhou L; Xiao H; Ho PY; Wong MS; Wang Y
    Colloids Surf B Biointerfaces; 2016 Apr; 140():324-331. PubMed ID: 26764113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.