These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23419162)

  • 1. Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions.
    Manabe K; Kageyama Y; Morimoto T; Shimizu E; Takahashi H; Kanaya S; Ara K; Ozaki K; Ogasawara N
    Microb Cell Fact; 2013 Feb; 12():18. PubMed ID: 23419162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High external pH enables more efficient secretion of alkaline α-amylase AmyK38 by Bacillus subtilis.
    Manabe K; Kageyama Y; Tohata M; Ara K; Ozaki K; Ogasawara N
    Microb Cell Fact; 2012 Jun; 11():74. PubMed ID: 22681752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874.
    Manabe K; Kageyama Y; Morimoto T; Ozawa T; Sawada K; Endo K; Tohata M; Ara K; Ozaki K; Ogasawara N
    Appl Environ Microbiol; 2011 Dec; 77(23):8370-81. PubMed ID: 21965396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
    Toya Y; Hirasawa T; Morimoto T; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    J Biotechnol; 2014 Jun; 179():42-9. PubMed ID: 24667539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.
    Tian G; Wang Q; Wei X; Ma X; Chen S
    Enzyme Microb Technol; 2017 Apr; 99():9-15. PubMed ID: 28193334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional dissection of a trigger enzyme: mutations of the bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties.
    Gunka K; Newman JA; Commichau FM; Herzberg C; Rodrigues C; Hewitt L; Lewis RJ; Stülke J
    J Mol Biol; 2010 Jul; 400(4):815-27. PubMed ID: 20630473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system.
    Commichau FM; Gunka K; Landmann JJ; Stülke J
    J Bacteriol; 2008 May; 190(10):3557-64. PubMed ID: 18326565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.
    Zhang W; He Y; Gao W; Feng J; Cao M; Yang C; Song C; Wang S
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):297-305. PubMed ID: 25540046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC.
    Commichau FM; Herzberg C; Tripal P; Valerius O; Stülke J
    Mol Microbiol; 2007 Aug; 65(3):642-54. PubMed ID: 17608797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis.
    Tanaka K; Iwasaki K; Morimoto T; Matsuse T; Hasunuma T; Takenaka S; Chumsakul O; Ishikawa S; Ogasawara N; Yoshida K
    BMC Microbiol; 2015 Feb; 15():43. PubMed ID: 25880922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular properties and enhancement of thermostability by random mutagenesis of glutamate dehydrogenase from Bacillus subtilis.
    Khan MI; Ito K; Kim H; Ashida H; Ishikawa T; Shibata H; Sawa Y
    Biosci Biotechnol Biochem; 2005 Oct; 69(10):1861-70. PubMed ID: 16244435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering.
    Feng J; Gu Y; Quan Y; Cao M; Gao W; Zhang W; Wang S; Yang C; Song C
    Metab Eng; 2015 Nov; 32():106-115. PubMed ID: 26410449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of key enzymes involved in L-glutamate synthesis and degradation in the thermotolerant and methylotrophic bacterium Bacillus methanolicus.
    Krog A; Heggeset TM; Ellingsen TE; Brautaset T
    Appl Environ Microbiol; 2013 Sep; 79(17):5321-8. PubMed ID: 23811508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis.
    Morimoto T; Kadoya R; Endo K; Tohata M; Sawada K; Liu S; Ozawa T; Kodama T; Kakeshita H; Kageyama Y; Manabe K; Kanaya S; Ara K; Ozaki K; Ogasawara N
    DNA Res; 2008 Apr; 15(2):73-81. PubMed ID: 18334513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CcpA-dependent regulation of Bacillus subtilis glutamate dehydrogenase gene expression.
    Belitsky BR; Kim HJ; Sonenshein AL
    J Bacteriol; 2004 Jun; 186(11):3392-8. PubMed ID: 15150224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection-driven accumulation of suppressor mutants in bacillus subtilis: the apparent high mutation frequency of the cryptic gudB gene and the rapid clonal expansion of gudB(+) suppressors are due to growth under selection.
    Gunka K; Stannek L; Care RA; Commichau FM
    PLoS One; 2013; 8(6):e66120. PubMed ID: 23785476
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Noda-Garcia L; Romero Romero ML; Longo LM; Kolodkin-Gal I; Tawfik DS
    EMBO Rep; 2017 Jul; 18(7):1139-1149. PubMed ID: 28468957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in Bacillus subtilis.
    Stannek L; Thiele MJ; Ischebeck T; Gunka K; Hammer E; Völker U; Commichau FM
    Environ Microbiol; 2015 Sep; 17(9):3379-90. PubMed ID: 25711804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational design of glutamate dehydrogenase in Bacillus subtilis natto.
    Chen LL; Wang JL; Hu Y; Qian BJ; Yao XM; Wang JF; Zhang JH
    J Mol Model; 2013 Apr; 19(4):1919-27. PubMed ID: 23338837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A counter-enzyme complex regulates glutamate metabolism in Bacillus subtilis.
    Jayaraman V; Lee DJ; Elad N; Vimer S; Sharon M; Fraser JS; Tawfik DS
    Nat Chem Biol; 2022 Feb; 18(2):161-170. PubMed ID: 34931064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.