BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 23419198)

  • 1. Assembly of hemoglobin from denatured monomeric subunits: heme ligation effects and off-pathway intermediates studied by electrospray mass spectrometry.
    Liu J; Konermann L
    Biochemistry; 2013 Mar; 52(10):1717-24. PubMed ID: 23419198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit disassembly and unfolding kinetics of hemoglobin studied by time-resolved electrospray mass spectrometry.
    Simmons DA; Wilson DJ; Lajoie GA; Doherty-Kirby A; Konermann L
    Biochemistry; 2004 Nov; 43(46):14792-801. PubMed ID: 15544350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding and assembly of hemoglobin monitored by electrospray mass spectrometry using an on-line dialysis system.
    Boys BL; Konermann L
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):8-16. PubMed ID: 16979901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetric behavior of hemoglobin alpha- and beta- subunits during acid-induced denaturation observed by electrospray mass spectrometry.
    Boys BL; Kuprowski MC; Konermann L
    Biochemistry; 2007 Sep; 46(37):10675-84. PubMed ID: 17718518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry.
    Griffith WP; Kaltashov IA
    Biochemistry; 2003 Aug; 42(33):10024-33. PubMed ID: 12924951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of symmetric denaturation of hemoglobin subunits by electrospray ionization mass spectrometry.
    Wang X; Zhao W; Lin X; Su B; Liu J
    J Mass Spectrom; 2010 Nov; 45(11):1306-11. PubMed ID: 20963788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.
    Domingues-Hamdi E; Vasseur C; Fournier JB; Marden MC; Wajcman H; Baudin-Creuza V
    PLoS One; 2014; 9(11):e111395. PubMed ID: 25369055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of Haptoglobin with Monomeric Globin Species: Insights from Molecular Modeling and Native Electrospray Ionization Mass Spectrometry.
    Fatunmbi O; Abzalimov RR; Savinov SN; Gershenson A; Kaltashov IA
    Biochemistry; 2016 Mar; 55(12):1918-28. PubMed ID: 26937685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.
    Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S
    Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein conformational heterogeneity as a binding catalyst: ESI-MS study of hemoglobin H formation.
    Griffith WP; Kaltashov IA
    Biochemistry; 2007 Feb; 46(7):2020-6. PubMed ID: 17253776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric studies of cisplatin-induced changes of hemoglobin.
    Mandal R; Kalke R; Li XF
    Rapid Commun Mass Spectrom; 2003; 17(24):2748-54. PubMed ID: 14673822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational dynamics of partially denatured myoglobin studied by time-resolved electrospray mass spectrometry with online hydrogen-deuterium exchange.
    Simmons DA; Dunn SD; Konermann L
    Biochemistry; 2003 May; 42(19):5896-905. PubMed ID: 12741848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-induced denaturation of myoglobin studied by time-resolved electrospray ionization mass spectrometry.
    Konermann L; Rosell FI; Mauk AG; Douglas DJ
    Biochemistry; 1997 May; 36(21):6448-54. PubMed ID: 9174361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of conformational changes and noncovalent complexes of myoglobin by electrospray ionization mass spectrometry, circular dichroism and fluorescence spectroscopy.
    Lin X; Zhao W; Wang X
    J Mass Spectrom; 2010 Jun; 45(6):618-26. PubMed ID: 20527030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.
    Li X; Zheng W; Zhang L; Yu P; Lin Y; Su L; Mao L
    Anal Chem; 2009 Oct; 81(20):8557-63. PubMed ID: 19754140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of oxaliplatin, cisplatin, and carboplatin with hemoglobin and the resulting release of a heme group.
    Mandal R; Kalke R; Li XF
    Chem Res Toxicol; 2004 Oct; 17(10):1391-7. PubMed ID: 15487901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of α-Hb chain binding to its chaperone AHSP depends on heme coordination and redox state.
    Kiger L; Vasseur C; Domingues-Hamdi E; Truan G; Marden MC; Baudin-Creuza V
    Biochim Biophys Acta; 2014 Jan; 1840(1):277-87. PubMed ID: 24060751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.
    Vu BC; Nothnagel HJ; Vuletich DA; Falzone CJ; Lecomte JT
    Biochemistry; 2004 Oct; 43(39):12622-33. PubMed ID: 15449952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.