BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23419200)

  • 1. Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia.
    Gorenkova N; Robinson E; Grieve DJ; Galkin A
    Antioxid Redox Signal; 2013 Nov; 19(13):1459-68. PubMed ID: 23419200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.
    Dröse S; Stepanova A; Galkin A
    Biochim Biophys Acta; 2016 Jul; 1857(7):946-57. PubMed ID: 26777588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I.
    Jiang L; Yin X; Chen YH; Chen Y; Jiang W; Zheng H; Huang FQ; Liu B; Zhou W; Qi LW; Li J
    Theranostics; 2021; 11(4):1703-1720. PubMed ID: 33408776
    [No Abstract]   [Full Text] [Related]  

  • 4. Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I.
    Babot M; Galkin A
    Biochem Soc Trans; 2013 Oct; 41(5):1325-30. PubMed ID: 24059527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury.
    Kim M; Stepanova A; Niatsetskaya Z; Sosunov S; Arndt S; Murphy MP; Galkin A; Ten VS
    Free Radic Biol Med; 2018 Aug; 124():517-524. PubMed ID: 30037775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain.
    Stepanova A; Konrad C; Guerrero-Castillo S; Manfredi G; Vannucci S; Arnold S; Galkin A
    J Cereb Blood Flow Metab; 2019 Sep; 39(9):1790-1802. PubMed ID: 29629602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction in cardiac ischemia-reperfusion injury: ROS from complex I, without inhibition.
    Tompkins AJ; Burwell LS; Digerness SB; Zaragoza C; Holman WL; Brookes PS
    Biochim Biophys Acta; 2006 Feb; 1762(2):223-31. PubMed ID: 16278076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of the active/de-active transition of mitochondrial complex I.
    Babot M; Birch A; Labarbuta P; Galkin A
    Biochim Biophys Acta; 2014 Jul; 1837(7):1083-92. PubMed ID: 24569053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
    Chen Q; Moghaddas S; Hoppel CL; Lesnefsky EJ
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C460-6. PubMed ID: 18077608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury.
    Stepanova A; Sosunov S; Niatsetskaya Z; Konrad C; Starkov AA; Manfredi G; Wittig I; Ten V; Galkin A
    Antioxid Redox Signal; 2019 Sep; 31(9):608-622. PubMed ID: 31037949
    [No Abstract]   [Full Text] [Related]  

  • 11. Mitochondrial Src tyrosine kinase plays a role in the cardioprotective effect of ischemic preconditioning by modulating complex I activity and mitochondrial ROS generation.
    Ge H; Zhao M; Lee S; Xu Z
    Free Radic Res; 2015 Oct; 49(10):1210-7. PubMed ID: 25968938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts.
    Tanaka-Esposito C; Chen Q; Lesnefsky EJ
    Transl Res; 2012 Sep; 160(3):207-16. PubMed ID: 22698829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury.
    Zhang H; Gong G; Wang P; Zhang Z; Kolwicz SC; Rabinovitch PS; Tian R; Wang W
    J Mol Cell Cardiol; 2018 Oct; 123():38-45. PubMed ID: 30165037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse electron flow-mediated ROS generation in ischemia-damaged mitochondria: role of complex I inhibition vs. depolarization of inner mitochondrial membrane.
    Ross T; Szczepanek K; Bowler E; Hu Y; Larner A; Lesnefsky EJ; Chen Q
    Biochim Biophys Acta; 2013 Oct; 1830(10):4537-42. PubMed ID: 23747300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin.
    Paradies G; Petrosillo G; Pistolese M; Di Venosa N; Federici A; Ruggiero FM
    Circ Res; 2004 Jan; 94(1):53-9. PubMed ID: 14656928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage.
    Galkin A
    Biochemistry (Mosc); 2019 Nov; 84(11):1411-1423. PubMed ID: 31760927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I.
    Chouchani ET; Methner C; Nadtochiy SM; Logan A; Pell VR; Ding S; James AM; Cochemé HM; Reinhold J; Lilley KS; Partridge L; Fearnley IM; Robinson AJ; Hartley RC; Smith RA; Krieg T; Brookes PS; Murphy MP
    Nat Med; 2013 Jun; 19(6):753-9. PubMed ID: 23708290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury.
    Perry JB; Davis GN; Allen ME; Makrecka-Kuka M; Dambrova M; Grange RW; Shaikh SR; Brown DA
    J Mol Cell Cardiol; 2019 Oct; 135():160-171. PubMed ID: 31445917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardiolipin.
    Petrosillo G; Di Venosa N; Ruggiero FM; Pistolese M; D'Agostino D; Tiravanti E; Fiore T; Paradies G
    Biochim Biophys Acta; 2005 Dec; 1710(2-3):78-86. PubMed ID: 16325647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial-targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species.
    Szczepanek K; Chen Q; Derecka M; Salloum FN; Zhang Q; Szelag M; Cichy J; Kukreja RC; Dulak J; Lesnefsky EJ; Larner AC
    J Biol Chem; 2011 Aug; 286(34):29610-20. PubMed ID: 21715323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.